EPDM/SBR Blends for Skim Compound of Steel Cord Conveyor Belt: Mechanical Properties, Thermal Stability and Adhesion Level

Article Preview

Abstract:

In this paper, the influence of some ingredient concentrations such as SBR ratio, DCP/S, CBS/DPG accelerator, EPDM-g-AM and cord surface on mechanical, thermal aging properties and adhesion between rubber compounds and cord have been investigated. The results showed that with suitable ingredients loading such as EPDM/SBR is 85/15 phr, DCP/S is 2.0/1.5 phr and EPDM-g-AM content is 2.0 phr with respect to rubber, the vulcanizates had good mechanical properties, thermal stability and adhesion level to the zinc/copper galvanized cord. The highest tensile strength, elongation at break and pull out strength reached 18.1 MPa, 432% and 60.3 N/mm respectively, and the highest retention after thermal aging at 150°C for 168 hours was about 0.76.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Setua DK, Pandey KN, Saxena AK, Mathur GN, Characterization of elastomer blend and compatibility, J Appl Polym Sci, 74, 480-489, (1999).

DOI: 10.1002/(sici)1097-4628(19991017)74:3<480::aid-app2>3.0.co;2-b

Google Scholar

[2] Nakason C, Kaesaman A, Samoh Z, Homsin S, Kiatkamjornwong S, Rheological properties of maleated natural rubber and natural rubber blends, Polym Test, 21, 449-455, (2002).

DOI: 10.1016/s0142-9418(01)00109-x

Google Scholar

[3] Pomposo JA, Calahorra E, Eguiazabal I, Cortazar M, Miscibility behavior of ternary poly (methylmethacrylate)/poly (ethylmethacrylate)/poly (p- vinylphenol) blends, Macromolecules, 26, 2104- 2110, (1993).

DOI: 10.1021/ma00060a045

Google Scholar

[4] Ismail H, Leong HC, Curing characteristics and mechanical properties of natural rubber/chloro- prene rubber and epoxidized natural rubber/chloroprene rubber blends, Polym Test, 20, 509-516, (2001).

DOI: 10.1016/s0142-9418(00)00067-2

Google Scholar

[5] Pandey KN, Setua DK, Mathur GN, Determination of the compatibility of NBR/EPDM blends by an ultrasonic technique, modulated DSC, dynamic mechanical analysis, and atomic force microscopy, Polym Eng Sci, 45, 1265-1276, (2005).

DOI: 10.1002/pen.20396

Google Scholar

[6] G.C. Basak, A. Bandopadhyay, Y.K. Bharadwaj, S. Sabharwal, A.K. Bhowmick, Adhesion of vulcanized rubber surfaces: characterization of unmodified and electron beam modified EPDM surfaces and their co-vulcanization with natural rubber, J. Adhes. Sci. Technol, 23 1763-1786, (2009).

DOI: 10.1163/016942409x12489445844471

Google Scholar

[7] M. Ehsani, H. Borsi, E. Gockenbach, J. Morshedian, and G. R. Bakhshandeh, An investigation of dynamic mechanical, thermal and electrical properties of housing materials for outdoor polymeric insulators, The European Polymer Journal, vol. 40 (11), 2495–2503, (2004).

DOI: 10.1016/j.eurpolymj.2004.03.014

Google Scholar

[8] E. Meuleman, J. Willemsen, M. Mulder, and M. Strathmann, EPDM as a selective membrane material in pervaporation, Journal of Membrane Science, vol. 188 (2), p.235–249, (2001).

DOI: 10.1016/s0376-7388(01)00382-9

Google Scholar

[9] J.R. White, S.K.De, Ruber Technologist's Handbook, Rapra Technology LTD. (2001).

Google Scholar

[10] Zhenhua Wang Yonglai Lu Jun Liu Zhimin Dang Liqun Zhang, Preparation of nano zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties, J. of applied polymer science, 119 (2), 1144-1155, (2011).

DOI: 10.1002/app.32736

Google Scholar

[11] Martin van Duin Ramona Orza Ron Peters Victor Chechik, Mechanism of Peroxide CrossLinking of EPDM Rubber, Macromolecular Symposia, Vol. 292 (1), 66-74, (2010).

DOI: 10.1002/masy.201050508

Google Scholar

[12] Suma, N.; Joseph R.; and George, K. E., Improved mechanical properties of NR/EPDM and NR/ butyl blends by precuring EPDM and butyl, J. Appl. Polym. Sci., 49, 549 – 556, (2003).

DOI: 10.1002/app.1993.070490318

Google Scholar

[13] Botros, S. H. and Sayed, A. M., Swelling behavior of NR/EPDM rubber blends under compression strain, J. Appl. Polym. Sci., 82, 3052 - 3066, (2001).

DOI: 10.1002/app.2160

Google Scholar

[14] Tapan K. et al, Abrasion of high temperature conveyor belt compounds based on ethylene propylene diene and bromobutyl rubber blends, Wear, Vol. 128, 167 – 178, (1988).

DOI: 10.1016/0043-1648(88)90182-2

Google Scholar

[15] Handbook of Belting, Goodyear Tire and Rubber Company, (1953).

Google Scholar

[16] Brendan Rodgers, Rubber Conveyor Belt Technology, Kindle edition, (2020).

Google Scholar

[17] Payam Zahedi, Rubber Adhesion to Different Substrates and Its Importance in Industrial Applications: A Review, Journal of Adhesion Science and Technology, Vol. 26, 721-744, (2012).

DOI: 10.1163/016942411x579975

Google Scholar

[18] Ningning Gong et al. Effect of metal surface state on injection joining strength of aluminum-rubber composite part, Journal of Manufacturing Processes, vol. 49, 365-372, (2020).

DOI: 10.1016/j.jmapro.2019.12.006

Google Scholar

[19] Gyung Soo Jeon et al., Enhancing the Adhesion Retention by Controlling the Structure of the Adhesion Interphase Between Rubber Compound and Metal. Part I. Effect of Cobalt Salt. Journal of Adhesion Science and Technology, Vol. 23, 913 – 930, (2009).

DOI: 10.1163/156856109x411256

Google Scholar

[20] Atanu Banerjee et al. Effect of Sn on the Adhesion between Cu–Sn Alloy Coated Steel and Styrene Butadiene Based Rubber, ISIJ International, Vo. 54 (3), 671-676, (2014).

DOI: 10.2355/isijinternational.54.671

Google Scholar

[21] I. Ismail, M. K. Harun, Adhesion failure of rubber/metal composite undergoing corrosion, Rubber Chemistry and Technology, 90 (3), 455- 466, (2017).

DOI: 10.5254/rct.16.83764

Google Scholar

[22] N.A. Nikiforova, M.A. Sheryshev, Estimation of the adhesion strength of rubber-metal bonds, Polymer Science, Vol. 5, 53-59, (2012).

DOI: 10.1134/s199542121201011x

Google Scholar