Insertion of a Viscoelastic Layer to Reduce the Propagation of Energy by Vertical Impacts of Slamming in Planing Hull Vessels

Article Preview

Abstract:

For the design of vessels built by GFRP laminates, an insert with a viscoelastic layer is proposed to reduce the spread of damage produced by the vertical impact of the ship's bottom with the sea or slamming phenomenon. Using vertical drops-weight impact machine that reproduce the energy inferred to the panel during navigation, the propagation of the damage of OoA cured prepreg panels is studied comparing it with modified panels with insertion of viscoelastic layer. The use of acceleration data reading allows the benefits of viscoelastic modification during impact to be quantified through the developed formulation. The force, displacement and energy returned by the panel after impact have also been quantified, which does not become intralaminar and interlaminar damage. It is shown that under 40 joules of impact, the viscoelastic sheet has its best ability to return energy and above 130 joules it loses its capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wagner, H. (1932). Über Stoß‐ und Gleitvorgänge an der Oberfläche von Flüssigkeiten. ZAMM ‐ Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 12(4), 193–215. https://doi.org/10.1002/zamm.19320120402.

DOI: 10.1002/zamm.19320120402

Google Scholar

[2] Qin, Z., & Batra, R. C. (2009). Local slamming impact of sandwich composite hulls. International Journal of Solids and Structures, 46(10), 2011–2035. https://doi.org/10.1016/j.ijsolstr.2008.04.019.

DOI: 10.1016/j.ijsolstr.2008.04.019

Google Scholar

[3] Hayman, B. (2010). Response of Sandwich Structures to Slamming and Impact Loads. Composite Materials in Maritime Structures, 161–177. https://doi.org/10.1017/cbo9780511751844.010.

DOI: 10.1017/cbo9780511751844.010

Google Scholar

[4] Chen, J. K., & Sun, C. T. (1985). Dynamic large deflection response of composite laminates subjected to impact. Composite Structures, 4(1), 59–73. https://doi.org/10.1016/0263-8223 (85)90020-0.

DOI: 10.1016/0263-8223(85)90020-0

Google Scholar

[5] Tamayo-Meza, P., Ovchinsky, A. S., Sandoval-Pineda, J. M., Flores-Herrera, L. A., & González Huerta, R. de G. (2014). Estudio de la dinámica de los procesos de fractura y de delaminación en materiales reforzados con fibras. Revista Facultad de Ingenieria, 70, 119–131.

DOI: 10.3989/revmetalm.2005.v41.iextra.1036

Google Scholar

[6] Lopes, C., Seresta, O. (2009). Low-velocity impact damage on disperse stacking secuence laminates. Part I: experiments. Composite Science Technology, 69, 926–936.

DOI: 10.1016/j.compscitech.2009.02.009

Google Scholar

[7] Ahmed, A., & Sluys, L. J. (2013). A numerical study on interacting damage mechanisms in FRP laminated composite plates. Heron, 58(1).

Google Scholar

[8] Belingardi, G., & Vadori, R. (2002). Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. International Journal of Impact Engineering, 27(2), 213–229. https://doi.org/10.1016/S0734-743X(01)00040-9.

DOI: 10.1016/s0734-743x(01)00040-9

Google Scholar

[9] Baucom, J. N., & Zikry, M. A. (2005). Low-velocity impact damage progression in woven E-glass composite systems. Composites Part A: Applied Science and Manufacturing, 36(5), 658–664. https://doi.org/10.1016/j.compositesa.2004.07.008.

DOI: 10.1016/j.compositesa.2004.07.008

Google Scholar

[10] Epaarachchi, J. A., & Clausen, P. D. (2003). An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Composites Part A: Applied Science and Manufacturing, 34(4), 313–326. https://doi.org/10.1016/S1359-835X(03)00052-6.

DOI: 10.1016/s1359-835x(03)00052-6

Google Scholar