Tool Wear Characteristics of TiCn/Al2O3 Coated Carbide Inserts while Turning Glass Fiber Reinforced Epoxy Resin under Cryogenic Cooling

Article Preview

Abstract:

The main issue in machining glass fiber reinforced polymers is a rapid wearing of the cutting tool caused by the superior properties of the fiber reinforcement within the matrix. Cooling in machining processes reduces tool wear and extends tool life. Cryogenic cooling is an alternative method for effective, environmentally friendly, clean and safe cooling. This paper studied the tool wear characteristics of carbide inserts coated with TiCN and Al2O3 in turning glass fiber reinforced epoxy resin pipe. The cutting parameters were various, with cutting speed, feed rate, depth of cut and cutting conditions (without cooling and with cryogenic cooling). Not all cutting speeds that were cooled under cryogenics showed good outcomes. However, the experimental results suggest that using high cutting speed at 1800 rpm and high feed rate at 0.13 mm/rev, together with cryogenic cooling, can reduce the flank wear of the tool compared with no cooling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-149

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Parida, R. Das, A. Sahoo, and B. Routara. Optimization of cutting parameters for surface roughness in machining of GFRP composites with graphite/fly ash filler. in Procedia Materials Science. (2014).

DOI: 10.1016/j.mspro.2014.07.134

Google Scholar

[2] S. Sharma, S. Tamang, D. Devarasiddappa, and M. Chandrasekran. Fuzzy logic modeling and multiple performance optimization in turning GFRP composites using desirability function analysis. in Procedia materials science. (2014).

DOI: 10.1016/j.mspro.2014.07.211

Google Scholar

[3] J. P. Davim and F. Mata: The International Journal of Advanced Manufacturing Technology.Vol. 26 (2005), pp.319-323.

Google Scholar

[4] G. Santhanakrishnan, R. Krishnamurthy, and S. Malhotra: Journal of Mechanical Working Technology.Vol. 17 (1988), pp.195-204.

Google Scholar

[5] K. Sakuma and M. Seto: Bulletin of JSME.Vol. 26 (1983), pp.1420-1427.

Google Scholar

[6] J. Zhou, H. Walter, M. Andersson, and J. Stahl: International Journal of Machine Tools and Manufacture.Vol. 43 (2003), pp.301-305.

Google Scholar

[7] N. Dhar, M. Kamruzzaman, and M. Ahmed: Journal of materials processing technology.Vol. 172 (2006), pp.299-304.

Google Scholar

[8] I. Karadzic, A. Masui, and N. Fujiwara: Journal of bioscience and bioengineering.Vol. 98 (2004), pp.145-152.

Google Scholar

[9] M. N. Sharif, S. Pervaiz, and I. Deiab: The International Journal of Advanced Manufacturing Technology.Vol. 89 (2017), pp.2447-2479.

Google Scholar

[10] J. Sutherland, V. Kulur, N. King, and B. Von Turkovich: CIRP Annals.Vol. 49 (2000), pp.61-64.

DOI: 10.1016/s0007-8506(07)62896-0

Google Scholar

[11] K. D. Timmerhaus and R. P. Reed: Cryogenic engineering: fifty years of progress. Springer Science & Business Media. (2007).

Google Scholar

[12] T. Stefánsson: Application of Cryogenic Coolants in Machining Processes: State-of-the-art Literature Study and Experimental Work on Metal Matrix Composite. (2014).

Google Scholar

[13] S. Debnath, M. M. Reddy, and Q. S. Yi: Journal of cleaner production.Vol. 83 (2014), pp.33-47.

Google Scholar

[14] C. Veiga, J. Davim, and A. Loureiro: Rev. Adv. Mater. Sci.Vol. 34 (2013), pp.148-164.

Google Scholar

[15] S. Y. Hong and Y. Ding: International Journal of Machine Tools and Manufacture.Vol. 41 (2001), pp.1417-1437.

Google Scholar

[16] M. Bermingham, J. Kirsch, S. Sun, S. Palanisamy, and M. Dargusch: International Journal of Machine Tools and Manufacture.Vol. 51 (2011), pp.500-511.

DOI: 10.1016/j.ijmachtools.2011.02.009

Google Scholar

[17] S. S. Gill, J. Singh, H. Singh, and R. Singh: International Journal of Machine Tools and Manufacture.Vol. 51 (2011), pp.25-33.

Google Scholar

[18] W. E. Bryson: Cryogenics. Hanser Gardner Publications. pp.81-107.(1999).

Google Scholar

[19] S. A. Hussain, V. Pandurangadu, and K. Palanikumar: European journal of scientific research.Vol. 41 (2010), pp.84-98.

Google Scholar

[20] M. A. Khan, A. S. Kumar, S. T. Kumaran, M. Uthayakumar, and T. J. Ko: Silicon.Vol. 11 (2019), pp.153-158.

Google Scholar

[21] H. F. Mark: Encyclopedia of polymer science and technology, concise. John Wiley & Sons.(2013).

Google Scholar

[22] W. K. Goertzen and M. Kessler: Composites Part B: Engineering.Vol. 38 (2007), pp.1-9.

Google Scholar

[23] N. Hameed, P. Sreekumar, B. Francis, W. Yang, and S. Thomas: Composites Part A: Applied Science and Manufacturing.Vol. 38 (2007), pp.2422-2432.

DOI: 10.1016/j.compositesa.2007.08.009

Google Scholar

[24] W. Koenig, C. Wulf, P. Grass, and H. Willerscheid: CIRP Annals.Vol. 34 (1985), pp.537-548.

Google Scholar

[25] N. S. Kalsi, R. Sehgal, and V. S. Sharma: Bulletin of Materials Science.Vol. 37 (2014), pp.327-335.

Google Scholar

[26] A. Sert and O. N. Celik: Materials Characterization.Vol. 150 (2019), pp.1-7.

Google Scholar

[27] P. HV and D. Girish: Journal of Engineering Research and Studies.Vol. 3 (2012), pp.105-107.

Google Scholar