Flexural Resistance Analysis on Hot Asphalt Mixtures with Wire Mesh Placement Modeling as Reinforcement

Article Preview

Abstract:

Flexural resistance is the ability of a specimen to withstand force in two pedestals with vertical axis until it is broken. Flexible pavement is a type of pavement which is very dependent with pavement course underneath. The dependency of flexible pavement in both base course and subgrade makes this pavement difficult to apply in unstable soil. Using wire mesh course as reinforcement is considerably able to raise the flexural resistance. This study is aimed to analyze flexural resistance value in hot mix by using wire mesh course as reinforcement. The study is conducted by applying experimental method with designing four types of wire mesh laying models in hot mix using three points flexural test equipment. Based on the study result, it is found that hot mix with wire mesh laying 30 mm from specimen surface is the best model type with 291,85 KN flexural resistance value with 8 mm of deflection depth. In this laying, it can be concluded that wire mesh course can raise up the flexural resistance up to 35,41% compared to the hot mix without wire mesh course.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Maaty, Fatigue and rutting lives in flexible pavement, Ain Shams Univ. 3 (2012) 367–374.

DOI: 10.1016/j.asej.2012.04.008

Google Scholar

[2] T. Suprapto, Highway Materials and Structures, third ed., KMTS FT UGM, Yogyakarta. (2006).

Google Scholar

[3] A. Hassani, M. Taghipoor, and M. M. Karimi, A state of the art of semi-flexible pavements : Introduction, design, and performance, Constr. Build. Mater. 253 (2020) 119196-119206.

DOI: 10.1016/j.conbuildmat.2020.119196

Google Scholar

[4] S. M. Saleh, R. Anggraini, and H. Aquina, Characteristics of Porus Asphalt Mixture with Styrofoam Substitution on 60/70 Penetration Asphalt, J. Tek. Sipil. 21 (2014) 753-761.

DOI: 10.5614/jts.2014.21.3.7

Google Scholar

[5] R. Ismy, S. M. Saleh, M. Isya, and Husaini, Deformation Velocity Analysis on Hot Asphalt Mixture Using Wire Mesh Layer as Reinforcement, Int. J. Psychosoc. Rehabil. 24 (2020) 502-509.

DOI: 10.4028/www.scientific.net/kem.892.99

Google Scholar

[6] R. Ismy, The Effect of Compaction Temperature on the Stability of Asphalt Concrete Mixtures in Gradual Aggregates Using Cellulose Fibers, J. Variasi. 3 (2011) 81-88.

Google Scholar

[7] Bukhari, Material Engineering and Pavement Thickness, Engineering Faculty, Universitas Syiah Kuala. (2007).

Google Scholar

[8] Sukirman, S, Hot Mixed Asphalt Concrete, first ed, Granit, Jakarta. (2003).

Google Scholar

[9] Suryawan. A, Portland Cement Concrete Pavement (Rigid Pavement), Beta Offset. Jakarta. (2005).

Google Scholar

[10] N. S. Correia and J. G. Zornberg, Strain distribution along geogrid-reinforced asphalt overlays under traffic loading, Geotext. Geomembr. 46 (2018) 111–120.

DOI: 10.1016/j.geotexmem.2017.10.002

Google Scholar

[11] A. M. Elleboudy, N. M. Saleh, and A. G. Salama, Assessment of geogrids in gravel roads under cyclic loading, Alex. Eng. J. 56 (2017) 319–326.

DOI: 10.1016/j.aej.2016.09.023

Google Scholar

[12] R. Razuardi, S. M. Saleh, and M. Isya, The Effect of Additional Buton Rock Asphalt (BRA) as Filler in Wearing Layer (AC-WC) Laston Mixed, J. Tek. Sipil. 1 (2018) 715–724.

DOI: 10.24815/jts.v1i3.10031

Google Scholar

[13] S. Widodo and I. Setyaningsih, Use of Marshall Tools to Test The Elasticity Modules of Asphalt Concrete, Simposium Nasional RAPI X FT UMS. (2011) 13-20.

Google Scholar

[14] T. D. Iskandar, Z. A. Muis, and A. S. Lubis, Study Determining The Value of The AC-WC Types of Asset Concrete Modulus, Department of Civil Engineering, Universitas Sumatera Utara. (2016) 14-22.

Google Scholar

[15] S. P, M. Warman, and I. Farni, Rigid Pavement Planning in Road of ' Padang city limits - haru intersection, Department of Civil Engineering, Universitas Sumatera Utara. (2017) 15-20.

Google Scholar

[16] L. F. Walubita, T. P. Nyamuhokya, J. J. Komba, H. Ahmed Tanvir, M. I. Souliman, and B. Naik, Comparative assessment of the interlayer shear-bond strength of geogrid reinforcements in hot-mix asphalt, Constr. Build. Mater. 191 (2018) 726–735.

DOI: 10.1016/j.conbuildmat.2018.10.035

Google Scholar

[17] A. M. Nugroho, A. Setyawan, and F. P. Pramesti, Fatique Analysis on Wearing Course Using Classical Fatique Method, Department of Civil Engineering, Universitas Sumatera Utara. (2016) 8-17.

Google Scholar

[18] A. Shen, S. Lin, Y. Guo, T. He, and Z. Lyu, Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions, Constr. Build. Mater. 174 (2018) 684–692.

DOI: 10.1016/j.conbuildmat.2018.04.165

Google Scholar

[19] M. N. S. Hadi and A. S. A. Al-Hedad, Flexural fatigue behaviour of geogrid reinforced concrete pavements, Constr. Build. Mater. 249 (2020) 118762-118772.

DOI: 10.1016/j.conbuildmat.2020.118762

Google Scholar

[20] M. A. C. López, W. Fedrigo, T. R. Kleinert, M. F. Matuella, W. P. Núñez, and J. A. P. Ceratti, Flexural fatigue evaluation of cement-treated mixtures of reclaimed asphalt pavement and crushed aggregates, Constr. Build. Mater. 158 (2018) 320–325.

DOI: 10.1016/j.conbuildmat.2017.10.003

Google Scholar

[21] M. Jallu, A. Arulrajah, S. Saride, and R. Evans, Flexural fatigue behavior of fly ash geopolymer stabilized-geogrid reinforced RAP bases, Constr. Build. Mater. 254 (2020) 119263-119270.

DOI: 10.1016/j.conbuildmat.2020.119263

Google Scholar

[22] A. Arulrajah, S. Perera, Y. C. Wong, S. Horpibulsuk, and F. Maghool, Stiffness and flexural strength evaluation of cement stabilized PET blends with demolition wastes, Constr. Build. Mater. 239 (2020) 117819-117825.

DOI: 10.1016/j.conbuildmat.2019.117819

Google Scholar

[23] F. Yuan, M. Chen, and J. Pan, Flexural strengthening of reinforced concrete beams with high-strength steel wire and engineered cementitious composites, Constr. Build. Mater. 254 (2020) 119284-119292.

DOI: 10.1016/j.conbuildmat.2020.119284

Google Scholar

[24] SNI 03-1732-1989, The Procedure for Planning for Flexible Pavement Thickness for Roads Using the Analysis of the Component Method, National Standardization Department (in: Indonesia). (1989).

Google Scholar

[25] AASTHO, Standard Specification for Transportation Materials and Methods of Sampling and Testing, fifteen ed., Washington, DC. (1990).

Google Scholar

[26] Huang Y H, Pavement Analisys and Design, University of Ketucky. London. (1993).

Google Scholar

[27] D. Wang, X. Liang, D. Li, H. Liang, and H. Yu, Study on Mechanics-Based Cracking Resistance of Semiflexible Pavement Materials, Adv. Mater. Sci. Eng. (2018) 1–10.

DOI: 10.1155/2018/8252347

Google Scholar

[28] S. Wu, Q. Ye, and N. Li, Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers, Constr. Build. Mater. 22 (2008) 2111–2115.

DOI: 10.1016/j.conbuildmat.2007.07.018

Google Scholar

[29] Adfords. G, Adfords Glassgrid Asphalt Reinforcement, glasgrid.eu@saint-gobain.com, www.glasgrid.com/eu. (2017).

Google Scholar

[30] Adfords. G, Aplication of Pavement Reinforcement System Adfords Glassgrid, glasgrid.eu@saint-gobain.com, www.glasgrid.com/eu. (2017).

Google Scholar

[31] Ferguson. M, Reinforced Concrete Basics, forth ed, Erlangga, Jakarta. (1986).

Google Scholar

[32] Huang Y H, Pavement Analisys and Design, Pearson Prentice Hall, second ed, New Jersey, USA. (2004).

Google Scholar

[33] M.-J. Kim, S. Kim, D.-Y. Yoo, and H.-O. Shin, Enhancing mechanical properties of asphalt concrete using synthetic fibers, Constr. Build. Mater. 178 (2018) 233–243.

DOI: 10.1016/j.conbuildmat.2018.05.070

Google Scholar

[34] Sesaria, D A, The Effect of Crumb Rubber Gradation on Asphalt Mixture Characteristics, USU's Institutional Repository, Universitas Sumatera Utara. (2018).

Google Scholar