[1]
W.-F. Chen and J. Y. R. Liew, The civil engineering handbook. Crc Press, (2002).
Google Scholar
[2]
P.-C. Aı̈tcin, Cements of yesterday and today: concrete of tomorrow,, Cem. Concr. Res., vol. 30, no. 9, p.1349–1359, (2000).
DOI: 10.1016/s0008-8846(00)00365-3
Google Scholar
[3]
A. A. Shubbar, D. Al-Jumeily, A. J. Aljaaf, M. Alyafei, M. Sadique, and J. Mustafina, Investigating the Mechanical and Durability Performance of Cement Mortar Incorporated Modified Fly Ash and Ground Granulated Blast Furnace Slag as Cement Replacement Materials,, in 2019 12th International Conference on Developments in eSystems Engineering (DeSE), 2019, p.434–439.
DOI: 10.1109/dese.2019.00086
Google Scholar
[4]
A. A. Shubbar, M. Sadique, M. S. Nasr, Z. S. Al-Khafaji, and K. S. Hashim, The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash,, Karbala Int. J. Mod. Sci., vol. 6, no. 4, p.396–403, (2020).
DOI: 10.33640/2405-609x.2149
Google Scholar
[5]
Z. A. Hasan, M. S. Nasr, and M. K. Abed, Properties of reactive powder concrete containing different combinations of fly ash and metakaolin,, Mater. Today Proc., (2021).
DOI: 10.1016/j.matpr.2020.12.556
Google Scholar
[6]
H. S. Majdi et al., Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations,, Data Br., vol. 31, p.105961, (2020).
DOI: 10.1016/j.dib.2020.105961
Google Scholar
[7]
M. S. Nasr et al., Utilization of High Volume Fraction of Binary Combinations of Supplementary Cementitious Materials in the Production of Reactive Powder Concrete,, Period. Polytech. Civ. Eng., vol. 65, no. 1, p.335–343, (2021).
DOI: 10.3311/ppci.16242
Google Scholar
[8]
M. K. Obaid, M. S. Nasr, I. M. Ali, A. A. Shubbar, and K. S. Hashim, Performance of Green Mortar Made from Locally Available Waste Tiles and Silica Fume,, J. Eng. Sci. Technol. Technol., vol. 16, no. 1, (2021).
Google Scholar
[9]
A. A. Shubbar et al., Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days,, J. Build. Eng., vol. 30, p.101327, (2020).
DOI: 10.1016/j.jobe.2020.101327
Google Scholar
[10]
W. A. Zainab O. Al Masoodi Zainab Al Khafaji, Hassnen M Jafer, Anmar Dulaimi, The effect of a high alumina silica waste material on the engineering properties of a cement-stabilised soft soil,, in The 3rd BUiD Doctoral Research Conference, (2017).
Google Scholar
[11]
A. Alsalman, L. N. Assi, S. Ghotbi, S. Ghahari, and A. Shubbar, Users, Planners, and Governments Perspectives: A Public Survey on Autonomous Vehicles Future Advancements,, Transp. Eng., (2020).
DOI: 10.1016/j.treng.2020.100044
Google Scholar
[12]
M. S. Nasr, T. H. Hussain, H. Z. Kubba, and A. A. Shubbar, Influence of using high volume fraction of silica fume on mechanical and durability properties of cement mortar,, J. Eng. Sci. Technol., vol. 15, no. 4, p.2492–2506, (2020).
Google Scholar
[13]
M. Abed, M. Nasr, and Z. Hasan, Effect of silica fume/binder ratio on compressive strength development of reactive powder concrete under two curing systems,, in MATEC Web of Conferences, 2018, vol. 162, p.02022.
DOI: 10.1051/matecconf/201816202022
Google Scholar
[14]
T. Nochaiya, W. Wongkeo, and A. Chaipanich, Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete,, Fuel, vol. 89, no. 3, p.768–774, (2010).
DOI: 10.1016/j.fuel.2009.10.003
Google Scholar
[15]
M. S. Nasr, I. M. Ali, A. M. Hussein, A. A. Shubbar, Q. T. Kareem, and A. T. AbdulAmeer, Utilization of locally produced waste in the production of sustainable mortar,, Case Stud. Constr. Mater., vol. 13, p. e00464, (2020).
DOI: 10.1016/j.cscm.2020.e00464
Google Scholar
[16]
M. S. Nasr, A. A. Shubbar, Z.-A. R. Abed, and M. S. Ibrahim, Properties of eco-friendly cement mortar contained recycled materials from different sources,, J. Build. Eng., vol. 31, p.101444, (2020).
DOI: 10.1016/j.jobe.2020.101444
Google Scholar
[17]
T. H. Hussain, M. S. Nasr, and H. J. Salman, Effect of elevated temperature on degradation behaviour of reactive powder concrete made with rubber tire wastes as an aggregate replacement,, ARPN J. Eng. Appl. Sci., vol. 14, no. 3, p.775–780, (2019).
Google Scholar
[18]
S. A. K. Zainab, A. M. Zainab, H. Jafer, A. F. Dulaimi, and W. Atherton, The effect of using fluid catalytic cracking catalyst residue (FC3R) as a cement replacement in soft soil stabilisation",, Int. J. Civ. Eng. Technol., vol. 9, no. 4, p.522–533, (2018).
Google Scholar
[19]
R. Siddique, Utilization of industrial by-products in concrete,, Procedia Eng., vol. 95, p.335–347, (2014).
Google Scholar
[20]
C. Aidan and C. Trevor, Cement kiln dust. Concrete., October, (1995).
Google Scholar
[21]
F. Sariosseiri, M. Razavi, K. Carlson, and B. Ghazvinian, Stabilization of soils with portland cement and CKD and application of CKD on slope erosion control,, in Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011, p.778–787.
DOI: 10.1061/41165(397)80
Google Scholar
[22]
R. Taha, A. Al-Rawas, A. Al-Harthy, and A. Qatan, Use of cement bypass dust as filler in asphalt concrete mixtures,, J. Mater. Civ. Eng., vol. 14, no. 4, p.338–343, (2002).
DOI: 10.1061/(asce)0899-1561(2002)14:4(338)
Google Scholar
[23]
K. S. Al-Jabri, A. W. Hago, R. Taha, A. S. Alnuaimi, and A. H. Al-Saidy, Strength and insulating properties of building blocks made from waste materials,, J. Mater. Civ. Eng., vol. 21, no. 5, p.191–197, (2009).
DOI: 10.1061/(asce)0899-1561(2009)21:5(191)
Google Scholar
[24]
D. Barnat-Hunek, J. Góra, Z. Suchorab, and G. Łagód, Cement kiln dust,, in Waste and Supplementary Cementitious Materials in Concrete, Elsevier, 2018, p.149–180.
DOI: 10.1016/b978-0-08-102156-9.00005-5
Google Scholar
[25]
BS EN 196–1, Methods of testing cement. Determination of strength. British Standards Institution-BSI and CEN European Committee for Standardization, (2005).
Google Scholar
[26]
BS 1881: Part 203, Recommendations for Measurement of Velocity of Ultrasonic Pulses in Concrete. British Standards Institution, UK, (1983).
Google Scholar
[27]
M. M. Shoaib, M. M. Balaha, and A. G. Abdel-Rahman, Influence of cement kiln dust substitution on the mechanical properties of concrete,, Cem. Concr. Res., vol. 30, no. 3, p.371–377, (2000).
DOI: 10.1016/s0008-8846(99)00262-8
Google Scholar
[28]
M. S. Y. BHATTY, Use of cement-kiln dust in blended cements,, World Cem., vol. 15, no. 4, p.126–132, (1984).
Google Scholar
[29]
M. S. Y. BHATTY, Use of cement kiln dust in blended cements―alkali-aggregate reaction expansion,, World Cem., vol. 16, no. 10, p.386–392, (1985).
Google Scholar
[30]
M. S. Y. Bhatty, Properties of blended cements made with Portland cement, cement kiln dust, fly ash, and slag,, in Proceedings of the Imitational Congress on the Chemistry of Cement, 1986, p.118–127.
DOI: 10.14359/18723
Google Scholar
[31]
D. N. Jabbar, A. Al-Rifaie, A. M. Hussein, A. A. Shubbar, M. S. Nasr, and Z. S. Al-Khafaji, Shear behaviour of reinforced concrete beams with small web openings,, Mater. Today Proc., vol. 34, (2021).
DOI: 10.1016/j.matpr.2020.12.710
Google Scholar
[32]
A. Al-Rifaie, A. S. Al-Husainy, T. Al-Mansoori, and A. Shubbar, Flexural impact resistance of steel beams with rectangular web openings,, Case Stud. Constr. Mater., p. e00509, (2021).
DOI: 10.1016/j.cscm.2021.e00509
Google Scholar