Sustainable Fabrication Technology of Composite Board by Kenaf-Polypropylene for Automobile Door Interior Applications

Article Preview

Abstract:

Polypropylene resins have been enfolded with the automotive industry and suppliers to produce several spare parts. This is aimed at achieving zero emissions, kenaf plant which in Latin is Hibiscus Cannabinus is a natural fiber replacement resin. Natural fiber composites come in many different types, but kenaf has been exploited extensively over the last few years. The pre-board flow process of kenaf-polypropylene starts from mixing kenaf about 40% with 60% polypropylene, forming a pre-mat as the first output, entering the main treatment with the hot press into pre-board as the final output. Kenaf-polypropylene door trim is very absorbent of CO2, which is related to natural fiber base material. Door trim with kenaf-polypropylene as the base material reduces the weight by about 30% of the previous polypropylene resin and still provides high rigidity even at a reduced weight. The entire process is requiring 48382.4 kWh / month per cycle of total power consumption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.D. Warren: Colum. L. Rev Vol. 116 (2016), p.2103.

Google Scholar

[2] D. Klein, M.P. Carazo, M. Doelle, J. Bulmer, A. Higham, in: The Paris Agreement on Climate Change: Analysis and commentary, Oxford University Press, Jul 14 (2017).

DOI: 10.2139/ssrn.4124595

Google Scholar

[3] C. Dong, X. Dong, Q. Jiang, K. Dong, G. Liu: Science of the Total Environment Vol. 622 (2018), pp.1294-1303.

Google Scholar

[4] A. Wijaya, H. Chrysolite, M. Ge, C.K. Wibowo, A.L.M.O. Pradana, A. Utami, K. Austin: World Resources Institute. World Resour Inst Work Pap (2017), pp.1-36.

Google Scholar

[5] M.S. Huda, L.T. Drzal, D. Ray, A.K. Mohanty, M. Mishra: Properties and Performance of Natural-Fibre Composites (2008), pp.221-268.

DOI: 10.1533/9781845694593.2.221

Google Scholar

[6] D. Verma, I. Senal: Biomass, Biopolymer-Based Materials, and Bioenergy, (2019), pp.103-122.

DOI: 10.1016/b978-0-08-102426-3.00006-0

Google Scholar

[7] Y.A. El-Shekeil, S.M. Sapuan, K. Abdan, E.S. Zainudin: Materials & Design Vol. 40 (2012), pp.299-303.

DOI: 10.1016/j.matdes.2012.04.003

Google Scholar

[8] C. Widya, R. Andianti, N.N. Pragesari: Environment Statistics of Indonesia Forest and Climate Change (2019), p.10.

Google Scholar

[9] L. Anggraini, B. Tanaka, N. Matsuzuka, Y. Isono: Japanese Journal of Applied Physics Vol. 52 (2013), p.056501.

Google Scholar

[10] L. Anggraini, R. Yamamoto, K. Hagi, H. Fujiwara, K. Ameyama: Advanced Materials Research Vol. 896 (2014), pp.570-573.

DOI: 10.4028/www.scientific.net/amr.896.570

Google Scholar

[11] L. Anggraini, K. Ameyama: Journal of Nanomaterials Vol. 2012 (2012), pp.1-8.

Google Scholar

[12] L. Anggraini, R. Yamamoto, H. Fujiwara, K. Ameyama: Journal of Ceramic Science and Technology Vol. 2(3) (2011), pp.139-146.

Google Scholar

[13] P.T.D. Carada, T. Fujii, K. Okubo: AIP Conference Proceedings Vol. 1736(1) (2016), p.020029.

Google Scholar

[14] J. Andrzejewski, M. Szostak, M. Barczewski, P. Łuczak: Composites Part B: Engineering Vol. 163 (2019), pp.655-668.

DOI: 10.1016/j.compositesb.2018.12.109

Google Scholar

[15] G.K. Sathishkumar, M. Ibrahim, M. Mohamed Akheel, G. Rajkumar, B. Gopinath, R. Karpagam, P. Karthik, M. Martin Charles, G. Gautham, G. Gowri Shankar: A Review. Journal of Natural Fibers (2020), pp.1-24.

DOI: 10.1080/15440478.2020.1848723

Google Scholar