Piezoelectric PVDF Nanofibrous Membrane Electrospinning Optimization Parameters

Article Preview

Abstract:

The application of piezoelectric polyvinylidene fluoride (PVDF) has become of a great interest. Due to its piezoelectric properties, PVDF is used in various applications, namely, microdevices and sensors. Electrospinning was found to be the most suitable and efficient method to synthesis PVDF nanofibers. It is used to obtain PVDF nanofibers without additional mechanical stretching and with high β phase content. For these reasons, it is considered to be an economic technique. In the present paper, the parameters affecting the synthesis of PVDF nanofibers such as solution concentration, flow rate, voltage and Tip to Collector Distance (TCD), have been investigated. The optimum conditions were found to be 18% concentration, 15 cm TCD, 1 mL/h flowrate and 19 kV voltages. The fabricated nanofiber has been characterized using SEM, FTIR, XRD and a conductivity test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-76

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fuh, Y.K.; Chen, P.C.; Huang, Z.M.; Ho, H.C. Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric Nano/microfibers. Nano Energy 2015, 11, 671–677.

DOI: 10.1016/j.nanoen.2014.10.038

Google Scholar

[2] Wang, X.; Wang, S.; Yang, Y.; Wang, Z.L. Hybridized electromagnetic–triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553–4562.

DOI: 10.1021/acsnano.5b01187

Google Scholar

[3] Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

DOI: 10.1039/c5ee01532d

Google Scholar

[4] Deitzel J.M, Kleinmeyer J, Harris D and Tan N.C.B 2001 The effect of processing variables on the morphology of electrospun nanofibers and textiles Polymer 42 261.

DOI: 10.1016/s0032-3861(00)00250-0

Google Scholar

[5] Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M and Tanioka A 2006 Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition J. Polym. Sci. Part B Polym. Phys. 44(5) 779.

DOI: 10.1002/polb.20737

Google Scholar

[6] L. Persano, C. Dagdeviren, Y. Su et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride cotrifluoroethylene),, Nature Communications,vol. 4, no. 1, article 2639, (2013).

DOI: 10.1038/ncomms2639

Google Scholar

[7] Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1.

DOI: 10.1088/0964-1726/16/3/r01

Google Scholar

[8] Mitchell, G.R. Electrospinning; Polymer Chemistry Series; Mitchell, G.R., Ed.; The Royal Society of Chemistry: London, UK, 2015; ISBN 978-1-84973-556-8.

Google Scholar

[9] M A Zulfikar et al 2018 J. Phys.: Conf. Ser. 987 012011.

Google Scholar

[10] Zong X, Kim K, Fang D, Ran S, Hsiao B.S and Chu B 2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes Polymer 43 4403.

DOI: 10.1016/s0032-3861(02)00275-6

Google Scholar

[11] Theron S.A, Zussman E and Yarin A.L 2004 Experimental investigation of the governing parameters in the electrospinning of polymer solutions Polymer 45 (2017).

DOI: 10.1016/j.polymer.2004.01.024

Google Scholar

[12] Reneker D.H, Yarin A.L, Fong H and Koombhongse S 2000 Bending instability of electrically charged liquid jets of polymer solutions in electrospinning J. Appl. Phys. 87(9I) 4531.

DOI: 10.1063/1.373532

Google Scholar

[13] Shao, H.; Fang, J.; Wang, H.; Lin, T. E_ect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015, 5, 14345–14350.

DOI: 10.1039/c4ra16360e

Google Scholar

[14] Matabola, K.P.; Moutloali, R.M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers-E_ect of sodium chloride. J. Mater. Sci. 2013, 48, 5475–5482.

DOI: 10.1007/s10853-013-7341-6

Google Scholar

[15] Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013, 6, 2196–2202.

DOI: 10.1039/c3ee24230g

Google Scholar

[16] Beachley, V.;Wen, X. E_ect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci.Eng. C 2009, 29, 663–668.

DOI: 10.1016/j.msec.2008.10.037

Google Scholar

[17] S.-H. Wang, Y. Wan, B. Sun, L.-Z. Liu, and W. Xu, Mechanicaland electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector,, Nanoscale Research Letters, vol. 9, no. 1, p.522, (2014).

DOI: 10.1186/1556-276x-9-522

Google Scholar

[18] Alhasssan, Z. A., Burezq, Y. S., Nair, R., & Shehata, N. (2018). Polyvinylidene Difluoride Piezoelectric Electrospun Nanofibers: Review in Synthesis, Fabrication, Characterizations, and Applications. Journal of Nanomaterials, 2018, 1–12.

DOI: 10.1155/2018/8164185

Google Scholar