Preparation of a Composite Material by Graft Copolymerization of Methylmethacrylate and Fish Gelatin Using a Photocatalyst - Complex Oxide RbTe1.5W0.5O6

Article Preview

Abstract:

A new composite material based on fish gelatin (FG) was obtained by graft copolymerization of methylmethacrylate (MMA) onto fish gelatin. The process was initiated by radicals formed by the RbTe1.5W0.5O6 photocatalyst under visible light (λ=400-700 nm) irradiation at room temperature. The characteristics of the new polymer material were obtained by the methods of elemental and physico-chemical analyses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-336

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chen, Y. Li, L. Xie, et al., Thermosensitive chitosan-collagen composite hydrogel loaded with basic fibroblast growth factor retards ventricular remodeling after myocardial infarction in mice, Chin. J. Tissue Eng. Res. 25 (2021) 2472-2478.

Google Scholar

[2] M. Nosenko, A.M. Moysenovich, A. Arkhipova, et al., Fibroblasts upregulate expression of adhesion molecules and promote lymphocyte retention in 3D fibroin/gelatin scaffolds, Bioact. Mater. 6 (2021) 3449-3460.

DOI: 10.1016/j.bioactmat.2021.03.016

Google Scholar

[3] Egorikhina M.N., Aleinik D.Ya., Rubtsova Yu.P., et al., Hydrogel scffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics, Bioact. Mater. 4 (2019) 334-345.

DOI: 10.1016/j.bioactmat.2019.10.003

Google Scholar

[4] V.M. Oliveira, C.R. Assis, B.A.M. Costa, et al., Physical, biochemical, densitometric and spectroscopictechniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products, J. Mol. Struct. 1224 (2021) 129023.

DOI: 10.1016/j.molstruc.2020.129023

Google Scholar

[5] M. Toledano, M. Toledano-Osorio, A. Carrasco-Carmona, et al., State of the art on biomaterials for soft tissue augmentation in the oral cavity. Part I: Natural polymers-based biomaterials, Polymers, 12 (2020) 1850.

DOI: 10.3390/polym12081850

Google Scholar

[6] A.A. Ivanov, O.P. Popova, T.I. Danilova, et al., Strategies of the selection and use scaffolds in bioengineering, Biol. Bul. Rev.139 (2019) 196–205.

Google Scholar

[7] H.-J. Jiang, J. Xu, Z.-Y. Qiu, et al., Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen, Mater. 8 (2015) 2616-2634.

DOI: 10.3390/ma8052616

Google Scholar

[8] M. Vedhanayagam, S. Ananda, B.U. Nair, et al., Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO2 nanocomposites, Mater. Sci. Eng., C. (2019) 110378.

DOI: 10.1016/j.msec.2019.110378

Google Scholar

[9] B. Carrion, M.F. Souzanchi, V.T. Wang, et al., The synergistic effects of matrix stiffness and composition on the response of chondroprogenitor cells in a 3D precondensation microenvironment, Adv. Healthcare Mater. 5 (2016) 1192-1202.

DOI: 10.1002/adhm.201501017

Google Scholar

[10] J.L.A. Del Barrio, F. Arnalich-Montiel, M. Chiesa, et al., Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experiental animal model, J. Biomed. Mater. Res., Part A. 103 (2015) 1106-1118.

DOI: 10.1002/jbm.a.35249

Google Scholar

[11] V. Perez‐Puyana, P. Wieringa, Ya. Yuste, et al., Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering, J. Biomed. Mater. Res. (2021) 1–13.

DOI: 10.1002/jbm.a.37156

Google Scholar

[12] S. Fujisawa, Y. Kadoma, Tri-n-butylborane/water complex-mediated copolymerization of methyl methacrylate with proteinaceous materials and proteins: A Review, Polymers. 2 (2010) 575-595.

DOI: 10.3390/polym2040575

Google Scholar

[13] Y.L. Kuznetsova, E.A. Morozova, A.S. Vavilova, et al., Synthesis of biodegradable grafted copolymers of gelatin and polymethyl methacrylate, Polym. Sci., Ser. D. 13 (2020) 453-459.

DOI: 10.1134/s1995421220040115

Google Scholar

[14] Y.L. Kuznetsova, K.S. Sustaeva, A.S. Vavilova, et al., Tributylborane in the synthesis of graft-copolymers of gelatin and acrylamide, J. Organomet. Chem. 924 (2020) 121431.

DOI: 10.1016/j.jorganchem.2020.121431

Google Scholar

[15] L.L Semenycheva, V.O. Chasova, D.G. Fukina, A.V. Koryagin, N.B. Valetova, E.V. Suleimanov, Synthesis of polymethyl methacrylate–collagen graft copolymer using a photocatalyst - complex oxide RbTe1.5W0.5O6, Polym. Sci., Ser. D. 7 (2021) (sent to the press).

DOI: 10.1134/s1995421222010166

Google Scholar

[16] L.L. Semenycheva, J.L. Kuznetsova, N.B. Valetova, E.V. Geras'kina, O.A. Tarankova, Method for producing of acetic dispersion of high molecular fish collagen. RF. Patent 2,567,171. (2015).

Google Scholar

[17] D.G. Fukina, E.V. Suleimanov, G.K. Fukin, A.V. Boryakov, S.Y. Zubkov, L.A. Istomin, Crystal structure features of the mixed-valence tellurium β-pyrochlores: CsTe1.625W0.375O6 and RbTe1.5W0.5O6, J. Solid State Chem. 286 (2020) 121276.

DOI: 10.1016/j.jssc.2020.121267

Google Scholar

[18] G. Zengin, A.C.A. Zengin, E. Kılıc, et al., Characterization of collagen derived products prepared by use of alkali and dairy by-product, Environ. Eng. Manage. J. 18 (2019) 2355-2362.

DOI: 10.30638/eemj.2019.224

Google Scholar