[1]
D.P. Taggart, Current status of arterial grafts for coronary artery bypass grafting, Ann. Cardiothorac Surg. 2 (4) (2013) 427-430.
Google Scholar
[2]
M. Nakamura, N. Hori, H. Ando, S. Namba, T. Toyama, N. Nishimiya, K. Yamashita, Kimihiro, Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Materials Science and Engineering (2016). S0928493116300418.
DOI: 10.1016/j.msec.2016.01.037
Google Scholar
[3]
D. Yongabi, M. Khorshid, A. Gennaro, S. Jooken, S. Duwa, O. Deschaume, P. Losada-Perez, P. Dedecker, C. Bartic, M. Wubbenhorst, P. Wagner, Patrick, QCM-D study of time-resolved cell adhesion and detachment: Effect of surface free energy on eukaryotes and prokaryotes, ACS Applied Materials & Interfaces (2020). acsami.0c00353.
DOI: 10.1021/acsami.0c00353
Google Scholar
[4]
H. Ueno, M. Inoue, A. Okonogi, H. Kotera, T. Suzuki, Correlation between Cells-on-Chips materials and cell adhesion/proliferation focused on material's surface free energy, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 565 (2019) 188-194.
DOI: 10.1016/j.colsurfa.2018.12.059
Google Scholar
[5]
J.V. Sousa, L. Antunes, C. Mendes, A. Marinho, A. Gonçalves, Ó.D. Gonçalves, A. Matos, Prosthetic vascular graft infections: a center experience, Angiologia e Cirurgia Vascular. 10 (2) (2014) 52-57.
DOI: 10.1016/s1646-706x(14)70050-3
Google Scholar
[6]
S. Aslam, R.O. Darouiche, Role of antibiofilm-antimicrobial agents in controlling device-related infections, Int. J. Artif. Organs. 34 (2010) 752-758.
DOI: 10.5301/ijao.5000024
Google Scholar
[7]
U. Geipel, Pathogenic organisms in hip joint infections, Int. J. Med. Sci. 6 (2009) 234-240.
DOI: 10.7150/ijms.6.234
Google Scholar
[8]
L.V. Antonova, A. V. Mironov, A.E. Yuzhalin, E.O. Krivkina, A.R. Shabaev, M.A. Rezvova, V.O. Tkachenko, M.Yu. Khanova, T.Yu. Sergeeva, S.S. Krutitskiy, L.S. Barbarash, A brief report on an implantation of small-caliber biodegradable vascular grafts in a carotid artery of the sheep, Pharmaceuticals. 13 (2020) 101.
DOI: 10.3390/ph13050101
Google Scholar
[9]
E.O. Krivkina, K.Y. Klyshnikov, M.A. Rezvova, V.V. Sevostyanova, V.O. Tkachenko T.V. Glyshkova, A.V. Mironov, L.V. Antonova Development and in vivo evaluation of a biodegradable vascular graft reinforced with a fused PCL filament, Journal of Physics: Conference Series. 1611 (2020) 012053.
DOI: 10.1088/1742-6596/1611/1/012053
Google Scholar
[10]
Х.Wang, P. Lin, Q. Yao, C. Chen, Development of small-diameter vasculargrafts, World J. Surg. 31 (2007) 682-689.
Google Scholar
[11]
V.N. Jaspan, G.L. Hines, The current status of tissue-engineered vascular grafts. Cardiology in Review. 23 (5) (2015) 236-239.
DOI: 10.1097/crd.0000000000000060
Google Scholar
[12]
Vol.W. Ng, J.M. Chan, H. Sardon, R.J. Ono, J.M. García, Y.Y. Yang, J.L. Hedrick, Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections, Adv. Drug Deliv. Rev. 78 (2014) 46-62.
DOI: 10.1016/j.addr.2014.10.028
Google Scholar
[13]
C. Ghosh, J. Haldar , Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides, ChemMedChem. 10 (10) (2015) 1606-1624.
DOI: 10.1002/cmdc.201500299
Google Scholar
[14]
N. Molchanova, P.R. Hansen, H. Franzyk, Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 22 (9) (2017) 1430.
DOI: 10.3390/molecules22091430
Google Scholar
[15]
R. H. Samson, R. Morales, D. P. Showalter, M. R. Lepore, D.G. Nair, Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylenegrafts without heparin in a long-term comparison, J. Vasc.Surg. 64 (3) (2016) 638-647.
DOI: 10.1016/j.jvs.2016.03.414
Google Scholar
[16]
H Y. Duan, L.Ye, X. Wu, Q. Guan, X.F. Yang, F. Han, N. Liang, Z.F. Wang, Z.G. Wang, The in vivo characterization of electrospun heparin-bonded polycaprolactone in small-diameter vascular reconstruction, Vascular. 23 (4) (2015) 358-365.
DOI: 10.1177/1708538114550737
Google Scholar
[17]
A.W. Adamson, A.P. Gast, Physical chemistry of surfaces, sixth ed., A Wiley-Interscience Publication, New York, (1997).
Google Scholar
[18]
E. Ruckenstein, S.V. Gourisankar, Preparation and characterization of thin film surface coatings for biological environments, Biomaterials. 17 (1986) 403-422.
DOI: 10.1016/0142-9612(86)90028-1
Google Scholar
[19]
L. Paul, C.P. Sharma, Preferential adsorption of albumin on a polymer surface: an understanding, J. Colloid and Int. Sci. 84(2) (1981) 546-459.
Google Scholar
[20]
J. Kloubek, Development of methods for surface free energy determination using contact angles of liquids on solids, Adv. Colloid Int. Sci. 38 (1992) 99-142.
DOI: 10.1016/0001-8686(92)80044-x
Google Scholar
[21]
Y. G. Bogdanova, V. D Dolzhikova. Relationship between energy characteristics of surface of polymeric membranes and their transport properties, Russian Journal of Applied Chemistry. 91(8) (2018) 1311-1321.
DOI: 10.1134/s1070427218080098
Google Scholar
[22]
S.H. Kim, H.J. Ha, Y.K. Ko, S.J. Yoon, J.M. Rhee, M.S. Kim, H.B. Lee, G. Khang, Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability, J. Biomater. Sci. Polym. Ed. 18 (2007) 609-622.
DOI: 10.1163/156856207780852514
Google Scholar
[23]
E.M. Harnett, J. Alderman, T. Wood, The surface energy of various biomaterials coated with adhesion molecules used in cell culture, Colloids and Surfaces B: Biointerfaces. 55 (2007) 90-97.
DOI: 10.1016/j.colsurfb.2006.11.021
Google Scholar
[24]
P.Amornsudthiwat, R. Mongkolnavin, S. Kanokpanont, J. Panpranot, C.S. Wong, S. Damrongsakkul, Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasm, Colloids and Surfaces B: Biointerfaces. 111 (2013) 579-586.
DOI: 10.1016/j.colsurfb.2013.07.009
Google Scholar
[25]
C. Satriano, G. Marletta, E. Conte, Cell adhesion on low-energy ion beam-irradiated polysiloxane surfaces, Nuclear Instruments and Methods in Physics Research B. 148 (1999) 1079-1084.
DOI: 10.1016/s0168-583x(98)00830-1
Google Scholar
[26]
N.J. Hallab, K.J. Bundy, K. O'Connor, R.L. Moses, J.J. Jacobs, Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion, Tissue Engineering. 7(1) (2001) 55-71.
DOI: 10.1089/107632700300003297
Google Scholar
[27]
N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at high temperatures, Pergamon Materials Series. Vol. 3, Elsevir Science Ltd, Oxford, (1999).
Google Scholar
[28]
S. Brunauer, D.L. Kantro, C.H. Weise, The surface energies of amorphous silica and hydrous amorphous silica, Can J. Chem. 34 (1956) 1483-1496.
DOI: 10.1139/v56-190
Google Scholar
[29]
E. Chibowski, L. Holysz G.A.M. Kip, A. van Silfhout, H.J. Busscher, Surface energy components of glass from ellipsometry and zeta potential measurements, J. Colloid Int. Sci. 132 (1) (1988) 54-61.
DOI: 10.1016/0021-9797(89)90215-4
Google Scholar
[30]
E. Nyilas, W.A. Morton, D.M. Lederman, T-H. Chiu, R.D. Cummig, Interdependence of hemodynamic and surface parameters in thrombose, Trans. Amer. Soc. Artif. Int. Organs. 21 (1975) 55-70.
Google Scholar
[31]
D.H. Kaelble, J.Moacanin, A surface energy analysis of bioadhesion, J. Polymer. 18 (1977) 475-482.
DOI: 10.1016/0032-3861(77)90164-1
Google Scholar
[32]
L.A. Yarinich, E.A. Burakova, B.A. Zakharov, E.V. Boldyreva, I.N. Babkina, N.V. Tikunova, V.N. Silnikov, Synthesis and structureeactivity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents, Eur. J. Med. Chem. 95 (2015) 563-573.
DOI: 10.1016/j.ejmech.2015.03.033
Google Scholar