Impact of Modification on the Energy Characteristics of Surfaces and Matrix Properties of the New Effective Polymer Vascular Implants

Article Preview

Abstract:

New tissue-engineered vascular prostheses of small diameter (4mm) based on biodegradable polymer backbone – poly (ε-caprolactone) (PCL) and its composition with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV/ PCL) were created. The full cycle of surface modification of the backbone with polyvinylpyrrolidone and drugs permitted to increase significantly the atrombogenic and antimicrobial properties of prostheses and provide its effective matrix properties. Both types of the developed constructs are suitable for testing in vivo. The energy characteristics of the prosthesis surfaces at the different interfaces were determined. It was established that the value of the energy of the "polymer, saturated with octane/water" interface can be used as a parameter for predicting cell adhesion and proliferation in the case when it is difficult to determine or to distinguish the energy characteristics of the surfaces of tissue-engineered materials at the interface with air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

342-354

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.P. Taggart, Current status of arterial grafts for coronary artery bypass grafting, Ann. Cardiothorac Surg. 2 (4) (2013) 427-430.

Google Scholar

[2] M. Nakamura, N. Hori, H. Ando, S. Namba, T. Toyama, N. Nishimiya, K. Yamashita, Kimihiro, Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Materials Science and Engineering (2016). S0928493116300418.

DOI: 10.1016/j.msec.2016.01.037

Google Scholar

[3] D. Yongabi, M. Khorshid, A. Gennaro, S. Jooken, S. Duwa, O. Deschaume, P. Losada-Perez, P. Dedecker, C. Bartic, M. Wubbenhorst, P. Wagner, Patrick, QCM-D study of time-resolved cell adhesion and detachment: Effect of surface free energy on eukaryotes and prokaryotes, ACS Applied Materials & Interfaces (2020). acsami.0c00353.

DOI: 10.1021/acsami.0c00353

Google Scholar

[4] H. Ueno, M. Inoue, A. Okonogi, H. Kotera, T. Suzuki, Correlation between Cells-on-Chips materials and cell adhesion/proliferation focused on material's surface free energy, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 565 (2019) 188-194.

DOI: 10.1016/j.colsurfa.2018.12.059

Google Scholar

[5] J.V. Sousa, L. Antunes, C. Mendes, A. Marinho, A. Gonçalves, Ó.D. Gonçalves, A. Matos, Prosthetic vascular graft infections: a center experience, Angiologia e Cirurgia Vascular. 10 (2) (2014) 52-57.

DOI: 10.1016/s1646-706x(14)70050-3

Google Scholar

[6] S. Aslam, R.O. Darouiche, Role of antibiofilm-antimicrobial agents in controlling device-related infections, Int. J. Artif. Organs. 34 (2010) 752-758.

DOI: 10.5301/ijao.5000024

Google Scholar

[7] U. Geipel, Pathogenic organisms in hip joint infections, Int. J. Med. Sci. 6 (2009) 234-240.

DOI: 10.7150/ijms.6.234

Google Scholar

[8] L.V. Antonova, A. V. Mironov, A.E. Yuzhalin, E.O. Krivkina, A.R. Shabaev, M.A. Rezvova, V.O. Tkachenko, M.Yu. Khanova, T.Yu. Sergeeva, S.S. Krutitskiy, L.S. Barbarash, A brief report on an implantation of small-caliber biodegradable vascular grafts in a carotid artery of the sheep, Pharmaceuticals. 13 (2020) 101.

DOI: 10.3390/ph13050101

Google Scholar

[9] E.O. Krivkina, K.Y. Klyshnikov, M.A. Rezvova, V.V. Sevostyanova, V.O. Tkachenko T.V. Glyshkova, A.V. Mironov, L.V. Antonova Development and in vivo evaluation of a biodegradable vascular graft reinforced with a fused PCL filament, Journal of Physics: Conference Series. 1611 (2020) 012053.

DOI: 10.1088/1742-6596/1611/1/012053

Google Scholar

[10] Х.Wang, P. Lin, Q. Yao, C. Chen, Development of small-diameter vasculargrafts, World J. Surg. 31 (2007) 682-689.

Google Scholar

[11] V.N. Jaspan, G.L. Hines, The current status of tissue-engineered vascular grafts. Cardiology in Review. 23 (5) (2015) 236-239.

DOI: 10.1097/crd.0000000000000060

Google Scholar

[12] Vol.W. Ng, J.M. Chan, H. Sardon, R.J. Ono, J.M. García, Y.Y. Yang, J.L. Hedrick, Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections, Adv. Drug Deliv. Rev. 78 (2014) 46-62.

DOI: 10.1016/j.addr.2014.10.028

Google Scholar

[13] C. Ghosh, J. Haldar , Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides, ChemMedChem. 10 (10) (2015) 1606-1624.

DOI: 10.1002/cmdc.201500299

Google Scholar

[14] N. Molchanova, P.R. Hansen, H. Franzyk, Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 22 (9) (2017) 1430.

DOI: 10.3390/molecules22091430

Google Scholar

[15] R. H. Samson, R. Morales, D. P. Showalter, M. R. Lepore, D.G. Nair, Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylenegrafts without heparin in a long-term comparison, J. Vasc.Surg. 64 (3) (2016) 638-647.

DOI: 10.1016/j.jvs.2016.03.414

Google Scholar

[16] H Y. Duan, L.Ye, X. Wu, Q. Guan, X.F. Yang, F. Han, N. Liang, Z.F. Wang, Z.G. Wang, The in vivo characterization of electrospun heparin-bonded polycaprolactone in small-diameter vascular reconstruction, Vascular. 23 (4) (2015) 358-365.

DOI: 10.1177/1708538114550737

Google Scholar

[17] A.W. Adamson, A.P. Gast, Physical chemistry of surfaces, sixth ed., A Wiley-Interscience Publication, New York, (1997).

Google Scholar

[18] E. Ruckenstein, S.V. Gourisankar, Preparation and characterization of thin film surface coatings for biological environments, Biomaterials. 17 (1986) 403-422.

DOI: 10.1016/0142-9612(86)90028-1

Google Scholar

[19] L. Paul, C.P. Sharma, Preferential adsorption of albumin on a polymer surface: an understanding, J. Colloid and Int. Sci. 84(2) (1981) 546-459.

Google Scholar

[20] J. Kloubek, Development of methods for surface free energy determination using contact angles of liquids on solids, Adv. Colloid Int. Sci. 38 (1992) 99-142.

DOI: 10.1016/0001-8686(92)80044-x

Google Scholar

[21] Y. G. Bogdanova, V. D Dolzhikova. Relationship between energy characteristics of surface of polymeric membranes and their transport properties, Russian Journal of Applied Chemistry. 91(8) (2018) 1311-1321.

DOI: 10.1134/s1070427218080098

Google Scholar

[22] S.H. Kim, H.J. Ha, Y.K. Ko, S.J. Yoon, J.M. Rhee, M.S. Kim, H.B. Lee, G. Khang, Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability, J. Biomater. Sci. Polym. Ed. 18 (2007) 609-622.

DOI: 10.1163/156856207780852514

Google Scholar

[23] E.M. Harnett, J. Alderman, T. Wood, The surface energy of various biomaterials coated with adhesion molecules used in cell culture, Colloids and Surfaces B: Biointerfaces. 55 (2007) 90-97.

DOI: 10.1016/j.colsurfb.2006.11.021

Google Scholar

[24] P.Amornsudthiwat, R. Mongkolnavin, S. Kanokpanont, J. Panpranot, C.S. Wong, S. Damrongsakkul, Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasm, Colloids and Surfaces B: Biointerfaces. 111 (2013) 579-586.

DOI: 10.1016/j.colsurfb.2013.07.009

Google Scholar

[25] C. Satriano, G. Marletta, E. Conte, Cell adhesion on low-energy ion beam-irradiated polysiloxane surfaces, Nuclear Instruments and Methods in Physics Research B. 148 (1999) 1079-1084.

DOI: 10.1016/s0168-583x(98)00830-1

Google Scholar

[26] N.J. Hallab, K.J. Bundy, K. O'Connor, R.L. Moses, J.J. Jacobs, Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion, Tissue Engineering. 7(1) (2001) 55-71.

DOI: 10.1089/107632700300003297

Google Scholar

[27] N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at high temperatures, Pergamon Materials Series. Vol. 3, Elsevir Science Ltd, Oxford, (1999).

Google Scholar

[28] S. Brunauer, D.L. Kantro, C.H. Weise, The surface energies of amorphous silica and hydrous amorphous silica, Can J. Chem. 34 (1956) 1483-1496.

DOI: 10.1139/v56-190

Google Scholar

[29] E. Chibowski, L. Holysz G.A.M. Kip, A. van Silfhout, H.J. Busscher, Surface energy components of glass from ellipsometry and zeta potential measurements, J. Colloid Int. Sci. 132 (1) (1988) 54-61.

DOI: 10.1016/0021-9797(89)90215-4

Google Scholar

[30] E. Nyilas, W.A. Morton, D.M. Lederman, T-H. Chiu, R.D. Cummig, Interdependence of hemodynamic and surface parameters in thrombose, Trans. Amer. Soc. Artif. Int. Organs. 21 (1975) 55-70.

Google Scholar

[31] D.H. Kaelble, J.Moacanin, A surface energy analysis of bioadhesion, J. Polymer. 18 (1977) 475-482.

DOI: 10.1016/0032-3861(77)90164-1

Google Scholar

[32] L.A. Yarinich, E.A. Burakova, B.A. Zakharov, E.V. Boldyreva, I.N. Babkina, N.V. Tikunova, V.N. Silnikov, Synthesis and structureeactivity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents, Eur. J. Med. Chem. 95 (2015) 563-573.

DOI: 10.1016/j.ejmech.2015.03.033

Google Scholar