Thermal Behavior of the Porous Polymer Composites Based on LDPE and Natural Fillers Studied by Real Time Thermal Microscopy

Article Preview

Abstract:

Foaming of the biodegradable polymer composites and melting of the gas-filled materials were studied using thermal microscopy. Composite materials under investigation were based on the low density polyethylene and natural products used as the polymer composite fillers: wood flour and corn starch. Porous structure of the composite material was obtained using a chemical porogen “Hydrocerol BIF”. It has been shown that the foaming and melting processes occur differently in the polymer composite samples containing either different amount of the fillers or the same content of the filler with different particle size fractions. Thermal behavior of the composite samples was shown to be different from the behavior of pure polyethylene, which indicates non-additivity (superadditivity) of the contribution of the above components to the thermal behavior of the final composite material. All the results obtained using heating stage (hot stage) microscopy were in good agreement with the SEM and DSC data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

644-659

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Razza, F. Degli Innocenti, A. Dobon, C. Aliaga, C. Sanchez, M. Hortal, Environmental profile of a bio-based and biodegradable foamed packaging prototype in comparison with the current benchmark, Journal of Cleaner Production 102 (2015) 493-500.

DOI: 10.1016/j.jclepro.2015.04.033

Google Scholar

[2] J.H. Schut, Foamed PLA shows promise in biodegradable meat trays, Plastics Technology 53 (2007) 39-43.

Google Scholar

[3] T. Ojeda, A. Freitas, E. Dalmolin, M. Dal Pizzol, L. Vignol, J. Melnik, R. Jacques, F. Bento, F. Camargo, Abiotic and biotic degradation of oxo-biodegradable foamed polystyrene, Polymer Degradation and Stability 94 (2009) 2128-2133.

DOI: 10.1016/j.polymdegradstab.2009.09.012

Google Scholar

[4] L.T. Guan, F.G. Du, G.Z. Wang, Y.K. Chen, M. Xiao, S.J. Wang, Y.Z. Meng, Foaming and chain extension of completely biodegradable poly (propylene carbonate) using DPT as blowing agent, Journal of Polymer Research 14 (2007) 245-251.

DOI: 10.1007/s10965-007-9103-0

Google Scholar

[5] Tsui, C.W. Frank, Impact of processing temperature and composition on foaming of biodegradable poly (hydroxyalkanoate) blends, Industrial & Engineering Chemistry Research 53 (2014) 15896-15908.

DOI: 10.1021/ie5021766

Google Scholar

[6] W. Liu, P. Chen, X. Wang, F. Wang, Y. Wu, Effects of poly (butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly (lactic acid), Cellular Polymers 36 (2017) 75-96.

DOI: 10.1177/026248931703600202

Google Scholar

[7] H. Zhao, L. Li, Q. Zhang, Z. Xia, E. Yang, Y. Wang, W. Chen, L. Meng, D. Wang, L. Li, Manipulation of chain entanglement and crystal networks of biodegradable poly (butylene adipate-co-butylene terephthalate) during film blowing through the addition of a chain extender: an in situ synchrotron radiation X-ray scattering study, Biomacromolecules 20 (2019) 3895-3907.

DOI: 10.1021/acs.biomac.9b00975

Google Scholar

[8] S.S. Pelaseyed, H.R. Madaah Hosseini, A. Samadikuchaksaraei, A novel pathway to produce biodegradable and bioactive PLGA/TiO2 nanocomposite scaffolds for tissue engineering: Air–liquid foaming, Journal of Biomedical Materials Research Part A 108 (2020) 1390-1407.

DOI: 10.1002/jbm.a.36910

Google Scholar

[9] S.M.H. Khademi, F. Hemmati, M.A. Aroon, An insight into different phenomena involved in continuous extrusion foaming of biodegradable poly (lactic acid)/expanded graphite nanocomposites, International Journal of Biological Macromolecules 157 (2020) 470-483.

DOI: 10.1016/j.ijbiomac.2020.04.127

Google Scholar

[10] S.K. Lim, J.J. Lee, S.G. Jang, S.I. Lee, K.H. Lee, H.J. Choi, I.J. Chin, Synthetic aliphatic biodegradable poly (butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics, Polymer Engineering & Science 51 (2011) 1316-1324.

DOI: 10.1002/pen.21927

Google Scholar

[11] J.W. Chen, J.L. Liu, Batch-foamed biodegradable polylactide acid/organic modified montmorillonite clays and polylactide/sericite powder nanocomposites, Journal of Polymer Engineering 32 (2012) 121-126.

DOI: 10.1515/polyeng-2011-0148

Google Scholar

[12] X. Chai, J. Zhang, H. Hu, Study on preparation of biodegradable foamed material from bagasse fiber using microwave irradiation. Chemistry and Industry of Forest Products 29 (2009) 165-168.

Google Scholar

[13] C. Yanna, X. Shengling, L. Chen, Review on biodegradable foamed wood polymer composite buffering cushion packaging materials, Forest Engineering 2 (2014) 23.

Google Scholar

[14] Q. Li, Y. Liang, F. Chen, T. Sang, Preparation and performance of modified montmorillonite-reinforced wood-based foamed composites. Bioresources 15 (2020) 3566-3584.

DOI: 10.15376/biores.15.2.3566-3584

Google Scholar

[15] F. Molkara, S.K. Najafi, I. Ghasemi, Foam morphology and sound transmission loss of foamed wood flour/low-density polyethylene (LDPE)/nanoclay composites. Journal of Thermoplastic Composite Materials 31 (2018) 1470-1482.

DOI: 10.1177/0892705717738298

Google Scholar

[16] J. Cong, S. Zhang, Q. Zhang, Incorporation of Fe2O3 and ammonium polyphosphate to foamed wood-polyurethane composites for smoke suppression and flame resistance, Journal of Forestry Engineering 3 (2018) 95-101.

Google Scholar

[17] L.J. Zhao, J.Y. Cong, Q.H. Zhang, Study on properties of flame retardant foamed polyurethane/wood-flour composites, Fire Science and Technology, (2016) 10.

Google Scholar

[18] M. Kadela, A. Kukiełka, M. Małek, Characteristics of lightweight concrete based on a synthetic polymer foaming agent, Materials 13 (2020) 4979.

DOI: 10.3390/ma13214979

Google Scholar

[19] J. Verdu, A. Zoller, A. Marcilla, Plastisol foaming process. Decomposition of the foaming agent, polymer behavior in the corresponding temperature range and resulting foam properties, Polymer Engineering & Science 53 (2013) 1712-1718.

DOI: 10.1002/pen.23430

Google Scholar

[20] C. Yang, M. Wang, Z. Xing, Q. Zhao, M. Wang, G. Wu, A new promising nucleating agent for polymer foaming: Effects of hollow molecular-sieve particles on polypropylene supercritical CO2 microcellular foaming, RSC Advances 8 (2018) 20061-20067.

DOI: 10.1039/c8ra03071e

Google Scholar

[21] S.H. Lee, D.G. Kim, S.W. Lim, E.Y. Park, T.S. Park, K. Hyun, The investigation of rheological properties development for polymer matrix including foaming agent. Elastomers and Composites 51 (2016) 24-30.

DOI: 10.7473/ec.2016.51.1.24

Google Scholar

[22] L. Gu, M. Zhang, J. He, P. Ni, A porous cross-linked gel polymer electrolyte separator for lithium-ion batteries prepared by using zinc oxide nanoparticle as a foaming agent and filler, Electrochimica Acta 292 (2018) 769-778.

DOI: 10.1016/j.electacta.2018.09.147

Google Scholar

[23] C.D. Han, C.Y. Ma, Rheological properties of mixtures of molten polymer and fluorocarbon blowing agent. I. Mixtures of low‐density polyethylene and fluorocarbon blowing agent, Journal of Applied Polymer Science 28 (1983) 831-850.

DOI: 10.1002/app.1983.070280234

Google Scholar

[24] C.D. Han, C.Y. Ma, Rheological properties of mixtures of molten polymer and fluorocarbon blowing agent. II. Mixtures of polystyrene and fluorocarbon blowing agent, Journal of Applied Polymer Science 28 (1983) 851-860.

DOI: 10.1002/app.1983.070280235

Google Scholar

[25] R.A. Gorski, R.B. Ramsey, K.T. Dishart, Physical properties of blowing agent polymer systems. I. solubility of fluorocarbon blowing agents in thermoplastic resins, Journal of Cellular Plastics 22 (1986) 21-52.

DOI: 10.1177/0021955x8602200101

Google Scholar

[26] C.V. Vo, A.N. Paquet, Foamable styrenic polymer gel having a carbon dioxide blowing agent and a process for making a foam structure therefrom, Journal of Cleaner Production 4 (1995) 252.

DOI: 10.1016/0959-6526(96)89893-3

Google Scholar

[27] N.S. Ramesh, N. Malwitz, A non-isothermal model to study the influence of blowing agent concentration on polymer viscosity and gas diffusivity in thermoplastic foam extrusion, Journal of Cellular Plastics 35 (1999) 199-209.

DOI: 10.1177/0021955x9903500302

Google Scholar

[28] M. Jiang, L. He, W. Gong, L. Dong, H. Xie, C. Xiong, Enhancement of polymer foam quality by modifying structural and decomposition characteristics of chemical blowing agent, Polymer-Plastics Technology and Engineering 51 (2012) 263-267.

DOI: 10.1080/03602559.2011.625385

Google Scholar

[29] O.M. Istrate, B. Chen, Enhancements of clay exfoliation in polymer nanocomposites using a chemical blowing agent, Polymer International 63 (2014) 2008-2016.

DOI: 10.1002/pi.4753

Google Scholar

[30] L.C. Fidale, N. Ruiz, T. Heinze, O.A.E. Seoud, Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromolecular Chemistry and Physics 209 (2008) 1240-1254.

DOI: 10.1002/macp.200800021

Google Scholar

[31] O.A. El Seoud, L.C. Fidale, N. Ruiz, M.L.O. D'Almeida, E. Frollini, Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15 (2008) 371-392.

DOI: 10.1007/s10570-007-9189-x

Google Scholar

[32] Krüger, C. Ferrero, N.E. Zaritzky, Modelling corn starch swelling in batch systems: effect of sucrose and hydrocolloids, Journal of Food Engineering 58(2003) 125-133.

DOI: 10.1016/s0260-8774(02)00337-0

Google Scholar

[33] J.E. Hoff, Starch swelling pressure of cooked potatoes, Journal of Agricultural and Food Chemistry 20 (1972) 1283-1284.

DOI: 10.1021/jf60184a030

Google Scholar

[34] G. Martinez-Arguelles, F. Giustozzi, M. Crispino, G.W. Flintsch, Laboratory investigation on mechanical performance of cold foamed bitumen mixes: bitumen source, foaming additive, fiber-reinforcement and cement effect, Construction and Building Materials 93 (2015) 241-248.

DOI: 10.1016/j.conbuildmat.2015.05.116

Google Scholar

[35] J. Pokorný, M. Pavlíková, M. Záleská, J. Studnička, Z. Pavlík, Synergy action of glass powder and foaming additive in production of lightweight cement-based materials, IOP Conference Series: Materials Science and Engineering 371 (2018) 012001.

DOI: 10.1088/1757-899x/371/1/012001

Google Scholar

[36] V.N. Gorshenev, O.V. Gradov, M.A. Gradova, [Differential estimation of structural properties of biomimetic materials for tissue engineering using real time correlation spectral analysis and structure-preserving maps (morphisms) in category theory framework], Genes and Cells, 14S (2019) 68–69.

Google Scholar

[37] J. Kim, M.J. Yaszemski, L. Lu, Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens, Tissue Engineering Part C: Methods 15 (2009) 583-594.

DOI: 10.1089/ten.tec.2008.0642

Google Scholar

[38] Y.C. Cho, J.W. Rhie, J.G. Park, S.O. Kim, J.H. Byun, D.S. Moon, Y.H. Jung, Y.M. Ju, D.K. Han, In vivo biodegradability of PLLA and PLGA sponge using non-toxic effevescent as a porogen additive, Journal of the Korean Society of Plastic and Reconstructive Surgeons 29 (2002) 431-438.

Google Scholar

[39] S. Ghosh, J.C. Viana, R.L. Reis, J.F. Mano, The double porogen approach as a new technique for the fabrication of interconnected poly (L-lactic acid) and starch based biodegradable scaffolds, Journal of Materials Science: Materials in Medicine 18 (2007) 185-193.

DOI: 10.1007/s10856-006-0680-y

Google Scholar

[40] A.M. Hawkins, T.A. Milbrandt, D.A. Puleo, J.Z. Hilt, Composite hydrogel scaffolds with controlled pore opening via biodegradable hydrogel porogen degradation, Journal of Biomedical Materials Research Part A 102 (2014) 400-412.

DOI: 10.1002/jbm.a.34697

Google Scholar

[41] A.N. Boyandin, L.M. Dvoinina, A.G. Sukovatyi, A.A. Sukhanova, Production of porous films based on biodegradable polyesters by the casting solution technique using a co-soluble porogen (Camphor), Polymers12 (2020) (1950).

DOI: 10.3390/polym12091950

Google Scholar

[42] S.C. Wu, H.C. Hsu, S.H. Hsiao, W.F. Ho, Preparation of porous 45S5 Bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive, Journal of Materials Science: Materials in Medicine 20 (2009) 1229-1236.

DOI: 10.1007/s10856-009-3690-8

Google Scholar

[43] H. Sharif, Development of a novel porogen insertion system used in solid freeform fabrication of porous biodegradable scaffolds with heterogeneous internal architectures, Master's thesis, University of Waterloo, (2010).

Google Scholar

[44] F. Behzadian, Additive manufacturing of functionally-graded porous biodegradable scaffolds using sacrificial porogens, Master's thesis, University of Waterloo, (2015).

Google Scholar

[45] M.V. Zimmermann, V.C. Brambilla, R.N. Brandalise, A.J. Zattera, Observations of the effects of different chemical blowing agents on the degradation of poly (lactic acid) foams in simulated soil, Materials Research 16 (2013) 1266-1273.

DOI: 10.1590/s1516-14392013005000133

Google Scholar

[46] Y.C. Lee, M.H. Choi, J.I. Han, Y.L. Lim, M. Lee, A low-foaming and biodegradable surfactant as a soil-flushing agent for diesel-contaminated soil, Separation Science and Technology 48 (2013) 1872-1880.

DOI: 10.1080/01496395.2013.779711

Google Scholar

[47] L.D. Harris, B.S. Kim, D.J. Mooney, Open pore biodegradable matrices formed with gas foaming, Journal of Biomedical Materials Research 42 (1998) 396-402.

DOI: 10.1002/(sici)1097-4636(19981205)42:3<396::aid-jbm7>3.0.co;2-e

Google Scholar

[48] M. Imaizumi, R. Fujihira, J. Suzuki, K. Yoshikawa, R. Ishioka, M. Takahashi, A study on biodegradable foam of poly (butylene succinate)(PBS) the relationship among branching factor, rheological properties and processability of direct extrusion gas foaming for PBS, Seikei-Kakou 11 (1999) 432-439.

DOI: 10.4325/seikeikakou.11.432

Google Scholar

[49] Salerno, S. Iannace, P.A. Netti, Open‐pore biodegradable foams prepared via gas foaming and microparticulate templating,  Macromolecular Bioscience 8 (2008) 655-664.

DOI: 10.1002/mabi.200700278

Google Scholar

[50] Tsivintzelis, E. Pavlidou, C. Panayiotou, Biodegradable polymer foams prepared with supercritical CO2–ethanol mixtures as blowing agents, Journal of Supercritical Fluids 42 (2007) 265-272.

DOI: 10.1016/j.supflu.2007.02.009

Google Scholar

[51] Z.G. Ma, X.H. Lang, P. Luo, Z.X. Xin, Z.X. Zhang, Microcellular foaming of biodegradable PLA/PPC composite using supercritical CO2. Materials Science Forum 861 (2016) 247-252.

DOI: 10.4028/www.scientific.net/msf.861.247

Google Scholar

[52] B. Li, G. Zhao, G. Wang, L. Zhang, J. Gong, Z. Shi, Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption, Separation and Purification Technology 257 (2021) 117949.

DOI: 10.1016/j.seppur.2020.117949

Google Scholar

[53] Salerno, C.D. Pascual, A clean and sustainable route towards the design and fabrication of biodegradable foams by means of supercritical CO2/ethyl lactate solid-state foaming, RSC Advances 3 (2013) 17355-17363.

DOI: 10.1039/c3ra42345j

Google Scholar

[54] C.B. Park, Y. Liu, H.E. Naguib, Challenge to fortyfold expansion of biodegradable polyester foams by using carbon dioxide as a blowing agent, Journal of Vinyl and Additive Technology 6 (2000) 39-48.

DOI: 10.1002/vnl.10221

Google Scholar

[55] Léonard, C. Calberg, G. Kerckhofs, M. Wevers, R. Jérôme, J.P. Pirard, A. Germain, S. Blacher, Characterization of the porous structure of biodegradable scaffolds obtained with supercritical CO2 as foaming agent, Journal of Porous Materials 15 (2008) 397-403.

DOI: 10.1007/s10934-006-9094-y

Google Scholar

[56] Q. Xu, Q. Peng, W. Ni, Z. Hou, J. Li, L.Yu, Study of different effect on foaming process of biodegradable bionolle in supercritical carbon dioxide, Journal of Applied Polymer Science 100 (2006) 2901-2906.

DOI: 10.1002/app.23796

Google Scholar

[57] D. Rouholamin, P.J. Smith, E. Ghassemieh, Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming, Journal of Materials Science 48 (2013) 3254-3263.

DOI: 10.1007/s10853-012-7109-4

Google Scholar

[58] L. Diaz-Gomez, C.A. García-González, J. Wang, F. Yang, S. Aznar-Cervantes, J.L. Cenis, R. Reyes, A. Delgado, C. Évora, A. Concheiro, C. Alvarez-Lorenzo, Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration, International Journal of Pharmaceutics, 527 (2017) 115-125.

DOI: 10.1016/j.ijpharm.2017.05.038

Google Scholar

[59] Y.X.J. Ong, L.Y. Lee, P. Davoodi, C.H. Wang, Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process, Journal of Supercritical Fluids 133 (2018) 263-269.

DOI: 10.1016/j.supflu.2017.10.018

Google Scholar

[60] Álvarez, C. Gutiérrez, J.F. Rodríguez, A. de Lucas, M.T. García, Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process, Journal of CO2 Utilization 41 (2020) 101227.

DOI: 10.1016/j.jcou.2020.101227

Google Scholar

[61] Manavitehrani, T.Y. Le, S. Daly, Y. Wang, P.K. Maitz, A. Schindeler, F. Dehghani, Formation of porous biodegradable scaffolds based on poly (propylene carbonate) using gas foaming technology, Materials Science and Engineering: C 96 (2019) 824-830.

DOI: 10.1016/j.msec.2018.11.088

Google Scholar

[62] Z. Liu, Preparation of biodegradable polymeric scaffolds with porosity gradients and interconnected structures using a subcritical carbon dioxide foaming process, Doctoral dissertation, University of Ottawa, Canada, (2008).

Google Scholar

[63] Y.S. Nam, J.J. Yoon, T.G. Park, A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive, Journal of Biomedical Materials Research 53 (2000) 1-7.

DOI: 10.1002/(sici)1097-4636(2000)53:1<1::aid-jbm1>3.0.co;2-r

Google Scholar

[64] J. J. Yoon, T.G. Park, Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts, 55 (2001) 401-408.

DOI: 10.1002/1097-4636(20010605)55:3<401::aid-jbm1029>3.0.co;2-h

Google Scholar

[65] T.G. Park, Perfusion culture of hepatocytes within galactose-derivatized biodegradable poly (lactide-co-glycolide) scaffolds prepared by gas foaming of effervescent salts, Journal of Biomedical Materials Research 59 (2002) 127-135.

DOI: 10.1002/jbm.1224

Google Scholar

[66] J.J. Yoon, J.H. Kim, T.G. Park, Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method, Biomaterials 24 (2003) 2323-2329.

DOI: 10.1016/s0142-9612(03)00024-3

Google Scholar

[67] J.J. Yoon, S.H. Song, D.S. Lee, T.G. Park Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method, Biomaterials 25 (2004) 5613-5620.

DOI: 10.1016/j.biomaterials.2004.01.014

Google Scholar

[68] A.H. Behravesh, C.B. Park, L.K., Cheung, R.D. Venter, Extrusion of polypropylene foams with hydrocerol and isopentane, Journal of Vinyl and Additive Technology 2 (1996) 349-357.

DOI: 10.1002/vnl.10153

Google Scholar

[69] D. Kropp, W. Michaeli, T. Herrmann, O. Schröder, Foam extrusion of thermoplastic elastomers using CO2 as blowing agent, Journal of Cellular Plastics 34 (1998) 304-311.

DOI: 10.1177/0021955x9803400402

Google Scholar

[70] J.G. Gwon, S.Y. Lee, H. Kang, J.H. Kim, Effects of sizes and contents of exothermic foaming agent on physical properties of injection foamed wood fiber/HDPE composites, International Journal of Precision Engineering and Manufacturing 13 (2012) 1003-1007.

DOI: 10.1007/s12541-012-0130-3

Google Scholar

[71] G.M. Rizvi, R. Pop-Lliev, C.B.J. Park, A novel system design for continuous processing of plastic/wood-fiber composite foams with improved cell morphology, Cellular Plastics, 38 (2002) 367.

DOI: 10.1177/0021955x02038005786

Google Scholar

[72] L.M. Matuana, C.B. Park, J.J. Balatinecz, Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites, Polymer Engineering and Science 37 (1997) 1137.

DOI: 10.1002/pen.11758

Google Scholar

[73] A.K. Bledzki, O. Faruk, Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection molded wood-fiber/polypropylene composites, Applied Polymer Science 97 (2005) 1090.

DOI: 10.1002/app.21685

Google Scholar

[74] G.M. Rizvi, C.B. Park, W.S. Lin, G. Guo, R. Pop-Iliev, Expansion mechanisms of plastic/wood-flour composite foams with moisture, dissolved gaseous volatiles, and undissolved gas bubbles, Polymer Engineering and Science 43 (2003) 1347.

DOI: 10.1002/pen.10115

Google Scholar

[75] J. Gao-Feng, W. Xiao-Jun, Z. Yi-Fan, K. Peng, L. Chao Triethanolamine–azodiisobutyronitrile mixture as a foaming agent for low-density unsaturated polyester resin manufacturing at a low temperature, Applied Polymer Science 134 (2017) 44797.

DOI: 10.1002/app.44797

Google Scholar

[76] L.M. Matuana, C.B. Park, J.J. Balatinecz, Cell morphology and property relationships of microcellular foamed PVC/wood fiber composites, Polymer Engineering & Science 38 (1998) 1862-1872.

DOI: 10.1002/pen.10356

Google Scholar

[77] B. Kord, Investigation on the long-term water absorption behavior and cell morphology of foamed wood–plastic nanocomposites, Journal of Thermoplastic Composite Materials 27 (2014) 379-394.

DOI: 10.1177/0892705712446800

Google Scholar

[78] E.E. Mastalygina, A.A. Popov, N.N. Kolesnikova, S.G. Karpova, Morphology, thermal behaviour and dynamic properties of the blends based on isotactic polypropylene and low-density polyethylene, International Journal of Plastics Technology 19 (2015) 68.

DOI: 10.1007/s12588-015-9112-5

Google Scholar

[79] Hao, Y. Geng, Q. Xu, Z. Lu, L.Yu, Study of different effects on foaming process of biodegradable PLA/starch composites in supercritical/compressed carbon dioxide, Journal of Applied Polymer Science 109 (2008) 2679-2686.

DOI: 10.1002/app.27861

Google Scholar

[80] W. Wang, H. Zhang, Y. Dai, H. Hou, H. Dong, Effects of low poly (vinyl alcohol) content on properties of biodegradable blowing films based on two modified starches, Journal of Thermoplastic Composite Materials 30 (2017) 1017-1030.

DOI: 10.1177/0892705715614080

Google Scholar

[81] X.K., Zeng, G.Z., Meng, C.S. Wang, Study on foaming effect of the biodegradable buffer material, Advanced Materials Research 221 (2011) 377-381.

DOI: 10.4028/www.scientific.net/amr.221.377

Google Scholar

[82] O. Faruk, M. Saint, Biofiber reinforcements in composite materials. Elsevier Science, Great Britain, (2014).

Google Scholar

[83] J.-H. Kim, G.-H. Kim, Preparation and cell morphology of ethylene-vinil acetate copolymer (EVA)/wood-flour foams with low density, Applied Polymer Science 131 (2014) 40894.

DOI: 10.1002/app.40894

Google Scholar

[84] D. Rodrigue, S. Souici, E. Twite-Kabamba Effect of wood powder on polymer foam nucleation, Vinyl and Additive Technology 12 (2006) 19.

DOI: 10.1002/vnl.20062

Google Scholar

[85] M.M. Senna, A.M. Yossef, F.M. Hossam, A.W.M. El-Naggar Biodegradation of low-density polyethylene/thermoplastic starch foams before and after electron beam irradiation, Applied Polymer Science 106 (2007) P. 3273.

DOI: 10.1002/app.26092

Google Scholar

[86] J. Ock, W. Li, Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer, Biofabrication 6 (2014) 024110.

DOI: 10.1088/1758-5082/6/2/024110

Google Scholar

[87] M.J. Lee, J.H. Hwang, J.H. Kim, T.Y. Lim, Electric properties of the laminate type PTC (positive temperature coefficient of resistance) thermistor according to polymer blowing agent, Korean Journal of Materials Research 22 (2012) 658-663.

DOI: 10.3740/mrsk.2012.22.12.658

Google Scholar