p.619
p.628
p.638
p.644
p.660
p.675
p.681
p.688
p.694
Comparison of SEM-Assisted Nanoporometric and Microporometric Morphometric Techniques Applied for the Ultramicroporous Polymer Films
Abstract:
One of the most important applications of polymeric porous nanomaterials is the design of nanoporous structures for operation in patch-clamp systems allowing to establish a gigaohm contact, as well as for the measurements of biomolecules, informational macromolecules, including DNA, translocating through the nanopore arrays. Development of nanopore sequencing techniques leads to fundamentally new big data arrays, but their representativeness and validity, as well as the validity of counting of biomacromolecular particles based on ultramicropore arrays, strongly depends both on the pore size (in engineering lithography unimodal pore size distribution is optimal) and the accuracy of the size distribution measurements using instrumental methods. However, the former is unattainable when using soft matter or stretchable, plastic and elastic polymer materials and films, while the latter depends on the metrological parameters of the instrumental and algorithmic porosimetry techniques. Therefore in this paper the question about the applicability of polymer materials with pore arrays for the studies of biomacromolecules and bionanostructures is proposed to be answered using a comparative analysis of two different porosimetry approaches with the resolution not lower than electron microscopic one.
Info:
Periodical:
Pages:
660-674
Citation:
Online since:
September 2021
Price:
Сopyright:
© 2021 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach, Nanopore DNA sequencing with MspA, Proceedings of the National Academy of Sciences 107 (2010) 16060-16065.
[2] R.D. Maitra, J. Kim, W.B. Dunbar, Recent advances in nanopore sequencing, Electrophoresis 33 (2012) 3418-3428.
[3] N.J. Loman, M. Watson, Successful test launch for nanopore sequencing, Nature Methods 12 (2015). 303-304.
DOI: 10.1038/nmeth.3327
[4] D.J. Burgess, Expanding applications for nanopore sequencing, Nature Reviews Genetics 21 (2020) 67.
[5] H. Bayley, Nanopore sequencing: from imagination to reality, Clinical Chemistry 61 (2015) 25-31.
[6] A.C. Rand, M. Jain, J.M. Eizenga, A. Musselman-Brown, H.E. Olsen, M. Akeson, B. Paten, Mapping DNA methylation with high-throughput nanopore sequencing, Nature Methods 14 (2017) 411-413.
DOI: 10.1038/nmeth.4189
[7] M.C. Schatz, Nanopore sequencing meets epigenetics, Nature Methods 14 (2017) 347-348.
DOI: 10.1038/nmeth.4240
[8] N. Kono, K. Arakawa, Nanopore sequencing: review of potential applications in functional genomics, Development, Growth and Differentiation 61 (2019) 316-326.
DOI: 10.1111/dgd.12608
[9] N.J. Loman, J. Quick, J. T. Simpson, A complete bacterial genome assembled de novo using only nanopore sequencing data, Nature Methods 12 (2015) 733-735.
DOI: 10.1038/nmeth.3444
[10] E. van der Helm, L. Imamovic, M.M. Hashim Ellabaan, W. van Schaik, A. Koza, M.O. Sommer, Rapid resistome mapping using nanopore sequencing, Nucleic Acids Research 45 (2017) e61.
DOI: 10.1093/nar/gkw1328
[11] W. Timp, U.M. Mirsaidov, D. Wang, J. Comer, A. Aksimentiev, G. Timp, Nanopore sequencing: electrical measurements of the code of life, IEEE Transactions on Nanotechnology 9 (2010) 281-294.
[12] Y. Li, R. Han, C. Bi, M. Li, S. Wang, X. Gao, DeepSimulator: a deep simulator for nanopore sequencing, Bioinformatics 34 (2018) 2899-2908.
[13] W. Makałowski, V. Shabardina, Bioinformatics of nanopore sequencing, Journal of Human Genetics 65 (2020) 61-67.
[14] S. Zhou, L. Wang, X. Chen, X. Guan, Label-free nanopore single-molecule measurement of trypsin activity, ACS Sensors 1 (2016) 607-613.
[15] A.K. Thakur, L. Movileanu, Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore, Nature Biotechnology 37 (2019) 96-101.
DOI: 10.1038/nbt.4316
[16] K. Freedman, A. Prabhu, P. Jemth, J. Edel, M. Kim, Protein unfolding and stability measurement using a solid-state nanopore, Biophysical Journal 102 (2012) 429a-430a.
[17] S. Acharya, A. Jiang, C. Kuo, R. Nazarian, K. Li, A. Ma, B. Siegal, C. Toh, J.J. Schmidt, Improved measurement of proteins using a solid-state nanopore coupled with a hydrogel, ACS Sensors 5 (2020) 370-376.
[18] J.M. Craig, A.H. Laszlo, H.D. Brinkerhoff, I.M. Derrington, M. Noakes, I.C. Nova, K.M. Doering, B.I. Tickman, N.F. De Leeuw, J.H. Gundlach, Direct single molecule measurement of ATP hydrolysis substates in HEL308 DNA helicase using nanopore tweezers, Biophysical Journal 112 (2017) 169a.
[19] M. Takemasa, M. Fujita, M. Maeda, 3I1422 Single molecular analysis of glycans and glycoproteins using a solid state nanopore, Seibutsu Butsuri 51 (2011) S138-S139.
[20] C.Y. Lee, Y.H. Hsiao, J.C. Yu, C.W. Hsu, C.H. Hsu, C. Chen, Measurement and modeling of the M13 bacteriophages transport in the conical-shaped nanopore, ECS Transactions 64 (2014) 51.
[21] J.S. Lee, J. Saharia, Y.N. Bandara, B.I. Karawdeniya, G. Goyal, A. Darvish, Q. Wang, M.J. Kim, M.J. Kim, Stiffness measurement of nanosized liposomes using solid‐state nanopore sensor with automated recapturing platform, Electrophoresis 40 (2019) 1337-1344.
[22] S. Shekar, D.J. Niedzwiecki, C.C. Chien, P. Ong, D.A. Fleischer, J. Lin, J.K. Rosenstein, M. Drndić, K.L. Shepard, Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal resolution, Nano Letters 16 (2016) 4483-4489.
[23] C.C. Chien, S. Shekar, D.J. Niedzwiecki, K.L. Shepard, M. Drndić, Single-stranded DNA translocation recordings through solid-state nanopores on glass chips at 10 MHz measurement bandwidth, ACS Nano 13 (2019) 10545-10554.
[24] E.D. Adamovich, O.V. Gradov, Several types of modulation and representation of constellation diagrams in rapid NGS data analysis using technologies of signal-processing-based bioinformatics, Book of Abstracts of the 6th All-Russian Scientific-Practical Conference on Genomic Sequencing and Editing, Moscow, 2018, p.17.
[25] M. Rhee, M.A. Burns, Nanopore sequencing technology: nanopore preparations, Trends in Biotechnology 25 (2007) 174-181.
[26] H. Yamazaki, S. Kimura, M. Tsukahara, S. Ito, K. Esashika, T. Saiki, Highly sensitive measurement of single DNA translocation through an ultraviolet light spot on silicon nanopore, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XI 8954 (2014) 895407.
DOI: 10.1117/12.2036648
[27] I. Shintaro, H. Yamazaki, M. Tsukahara, K. Esashika, T. Saiki, Measurement of salt dependence of single DNA translocation through Si nanopores with ultraviolet excitation, Biophysical Journal 108 (2015) 330a.
[28] C. Wen, Z. Zhang, S.L. Zhang, Physical model for rapid and accurate determination of nanopore size via conductance measurement ACS Sensors 2 (2017) 1523-1530.
[29] Y.N.D. Bandara, J.W. Nichols, B. Iroshika Karawdeniya, J.R. Dwyer, Conductance‐based profiling of nanopores: Accommodating fabrication irregularities, Electrophoresis 39 (2018) 626-634.
[30] L.J. Steinbock, R.D. Bulushev, S. Krishnan, C. Raillon, A. Radenovic, DNA translocation through low-noise glass nanopores, ACS Nano 7 (2013) 11255-11262.
DOI: 10.1021/nn405029j
[31] R.M., Smeets, U.F. Keyser, N.H. Dekker, C. Dekker, Noise in solid-state nanopores, Proceedings of the National Academy of Sciences 105 (2008) 417-421.
[32] K.B. Park, H.J. Kim, H.M. Kim, S.A. Han, K.H. Lee, S.W. Kim, K.B. Kim, Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate, Nanoscale 8 (2016) 5755-5763.
DOI: 10.1039/c5nr09085g
[33] V. Tabard-Cossa, D. Trivedi, M. Wiggin, N.N. Jetha, A. Marziali, Noise analysis and reduction in solid-state nanopores, Nanotechnology 18 (2007) 305505.
[34] T.R. Wojcik, D. Krapf, Solid-state nanopore recognition and measurement using Shannon entropy, IEEE Photonics Journal 3 (2011) 337-343.
[35] S.F. Knowles, U.F. Keyser, A.L. Thorneywork, Noise properties of rectifying and non-rectifying nanopores, Nanotechnology 31 (2019) 10LT01.
[36] R.M.M. Smeets, N.H. Dekker, C. Dekker, Low-frequency noise in solid-state nanopores, Nanotechnology 20 (2009) 095501.
[37] C. Wen, S. Zeng, K. Arstila, T. Sajavaara, Y. Zhu, Z. Zhang, S.L. Zhang, Generalized noise study of solid-state nanopores at low frequencies, ACS Sensors 2 (2017) 300-307.
[38] S. Gravelle, R.R. Netz, L. Bocquet, Adsorption kinetics in open nanopores as a source of low-frequency noise, Nano Letters 19 (2019) 7265-7272.
[39] O. Patil, D. Manikandan, V.V. Nandigana, A molecular dynamics simulation framework for predicting noise in solid-state nanopores, Molecular Simulation 46 (2020) 1011-1016.
[40] E. Beamish, H. Kwok, V. Tabard-Cossa, M. Godin, Precise control of the size and noise of solid-state nanopores using high electric fields, Nanotechnology 23 (2012) 405301.
[41] Z. Siwy, A. Fuliński, 1/f noise in ion transport through nanopores: origins and mechanism, AIP Conference Proceedings 665 (2003) 273-282.
DOI: 10.1063/1.1584901
[42] J. Saharia, Y.N.D. Bandara, B.I. Karawdeniya, G. Alexandrakis, M.J. Kim, Assessment of 1/f noise associated with nanopores fabricated through chemically‐tuned controlled dielectric breakdown, Electrophoresis (2020) [in press].
[43] A. Fragasso, S. Pud, C. Dekker, 1/f noise in solid-state nanopores is governed by access and surface regions, Nanotechnology 30 (2019) 395202.
[44] M.R. Powell, I. Vlassiouk, C. Martens, Z.S. Siwy, Nonequilibrium 1/f noise in rectifying nanopores, Physical Review Letters 103 (2009) 248104.
[45] S. Su, X. Guo, Y. Fu, Y. Xie, X. Wang, J. Xue, Origin of nonequilibrium 1/f noise in solid-state nanopores, Nanoscale 12 (2020) 8975-8981.
DOI: 10.1039/c9nr09829a
[46] O.V. Gradov, Instruments of nuclear electrophysiology in the analysis of kinetic phases of the local chromatin packaging, Book of Abstracts Chromosome-2015,, Novosibirsk, Russia, 2015, pp.80-81.
[47] S.F. Timashev, Flicker noise spectroscopy and its application: Information hidden in chaotic signals, Russian Journal of Electrochemistry 42 2006 424-466.
[48] C. Tasserit, A. Koutsioubas, D. Lairez, G. Zalczer, M.C. Clochard, Pink noise of ionic conductance through single artificial nanopores revisited, Physical Review Letters 105 (2010) 260602.
[49] L.J. De Vreede, C. Ying, J. Houghtaling, J.F. Da Silva, A.R. Hall, A. Lovera, M. Mayer, Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores, Nanotechnology 30 (2019) 265301.
[50] J.A. Bafna, G.V. Soni, Fabrication of low noise borosilicate glass nanopores for single molecule sensing, PloS One 11 (2016) e0157399.
[51] M.J. Kim, M. Wanunu, D.C. Bell, A. Meller, Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis, Advanced Materials 18 (2006) 3149-3153.
[52] A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision, Nature Materials 2 (2003) 537-540.
DOI: 10.1038/nmat941
[53] J. Kudr, S. Skalickova, L. Nejdl, A. Moulick, B. Ruttkay–Nedecky, V. Adam, R. Kizek, Fabrication of solid‐state nanopores and its perspectives, Electrophoresis 36 (2015) 2367-2379.
[54] D. Xia, C. Huynh, S. McVey, A. Kobler, L. Stern, Z. Yuan, X.S. Ling, Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope, Nanoscale 10 (2018) 5198-5204.
DOI: 10.1039/c7nr08406d
[55] J.C. Arnault, D. Eon, C. Hébert, D. Carole, F. Omnes, E. Gheeraert, Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores, Carbon 59 (2013) 448-456.
[56] P.Y. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, A. Presz, B.A. Sartowska, Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles, Nanotechnology 18 (2007) 305302.
[57] R. Wei, D. Pedone, A. Zürner, M. Döblinger, U. Rant, Fabrication of metallized nanopores in silicon nitride membranes for single‐molecule sensing, Small 6 (2010) 1406-1414.
[58] K.M. Alam, A.P. Singh, S.C. Bodepudi, S.Pramanik, Fabrication of hexagonally ordered nanopores in anodic alumina: An alternative pretreatment, Surface Science 605 (2011) 441-449.
[59] S.R. Park, H. Peng, X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching, Small 3 (2007) 116-119.
[60] Q. Chen, Y. Wang, T. Deng, Z. Liu, Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method, Nanotechnology 29 (2018) 085301.
[61] W. Zhang, D. Zhang, T. Fan, J. Ding, Q. Guo, H. Ogawa, Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales, Nanotechnology 17 (2006) 840.
[62] M. Yemini, B. Hadad, Y. Liebes, A. Goldner, N. Ashkenasy, The controlled fabrication of nanopores by focused electron-beam-induced etching, Nanotechnology 20 (2009) 245302.
[63] A.T. Kuan, B. Lu, P. Xie, T. Szalay, J.A. Golovchenko, Electrical pulse fabrication of graphene nanopores in electrolyte solution, Applied Physics Letters 106 (2015) 203109.
DOI: 10.1063/1.4921620
[64] Z.Y. Zhang, Y.S. Deng, H.B. Tian, H. Yan, H.L. Cui, D.Q. Wang, Noise analysis of monolayer graphene nanopores, International Journal of Molecular Sciences 19 (2018)2639.
DOI: 10.3390/ijms19092639
[65] S.J. Heerema, G.F. Schneider, M. Rozemuller, L. Vicarelli, H.W. andbergen, C. Dekker, 1/f noise in graphene nanopores, Nanotechnology 26 (2015) 074001.
[66] J.D. Uram, K. Ke, M. Mayer, Noise and bandwidth of current recordings from submicrometer pores and nanopores, ACS Nano 2 (2008) 857-872.
DOI: 10.1021/nn700322m
[67] K. Ito, Y. Kobayashi, Variable-energy positron annihilation as highly sensitive nanoporosimetry for porous thin films, Acta Phys. Pol. A 107 (2005) 717-723.
[68] Y. Jannot, A. Degiovanni, M. Camus, Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation, Review of Scientific Instruments 89, (2018) 044904.
DOI: 10.1063/1.5020117
[69] J. Zhang, Y. Tang, D. He, P. Sun, X. Zou, Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry, Applied Clay Science 196 (2020) 105758.
[70] T.M. Petrova, Y.N. Ponomarev, A.A. Solodov, A.M. Solodov, A.F. Danilyuk, Spectroscopic nanoporometry of aerogel, JETP Letters 101 (2015) 65-67.
[71] C. Gao, R. Xu, P. Jiang, H. Xue, The shale-gas permeability measurement considering the rarefaction effect on transport mechanism in the nanopores, Procedings of the International Petroleum Technology Conference (2013) cp-350.
[72] A.M. Popa, S. Angeloni, T. Burgi, J.A. Hubbell, H. Heinzelmann, R. Pugin, Dynamic perspective on the function of thermoresponsive nanopores from in situ AFM and ATR-IR investigations, Langmuir 26, (2010) 15356-15365.
DOI: 10.1021/la102611k
[73] L.S. Connelly, B. Meckes, J. Larkin, A.L. Gillman, M. Wanunu, R. Lal, Graphene nanopore support system for simultaneous high-resolution AFM imaging and conductance measurements, ACS Applied Materials & Interfaces 6 (2014) 5290-5296.
DOI: 10.1021/am500639q
[74] V.N. Sokolov, O.V. Razgulina, V.V. Privesentsev, D.V. Petrov, Computer analysis of the AFM images of the nanopore system on the SiO2/Si structure surface, obtained by Zn ion implantation, Bulletin of the Russian Academy of Sciences: Physics 78 (2014) 859-863.
[75] X. Liu, D. Song, X. He, Z. Wang, M. Zeng, K. Deng, Nanopore structure of deep-burial coals explored by AFM, Fuel 246 (2019) 9-17.
[76] M.C. Acharjee, H. Li, B. Ma, S. Tung, J. Li, Detection of tubulin and TAU proteins aggregations using solid-state nanopore and atomic force microscopy (AFM), Biophysical Journal 118 (2020) 474a.
[77] T. Schlotter, S. Weaver, T. Zambelli, J. Voros, M. Aramesh, Force-controlled Nanopores for single cell measurements using micro-channelled AFM cantilevers, Biophysical Journal 118 (2020) 174a.
[78] S. Jugade, S. Pal, M. Varma, A. Naik, Capillary condensation in peak force AFM imaging of nanopores, Bulletin of the American Physical Society (2021) [in press].
[79] A. Gadaleta, A.L. Biance, A. Siria, L. Bocquet, Ultra-sensitive flow measurement in individual nanopores through pressure–driven particle translocation, Nanoscale 7 (2015) 7965-7970.
DOI: 10.1039/c4nr07468h
[80] B. Goldstein, D. Kim, M. Magoch, Y. Astier, E. Culurciello, CMOS low current measurement system for nanopore sensing applications, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2011) 265-268.
[81] R. Gao, Y.L. Ying, B.Y. Yan, Y.T. Long, An integrated current measurement system for nanopore analysis, Chinese Science Bulletin 59 (2014) 4968-4973.
[82] L.J. De Vreede, C. Ying, J. Houghtaling, J.F. Da Silva, A.R. Hall, A. Lovera, M. Mayer, Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores, Nanotechnology 30 (2019) 265301.
[83] H. Qian, R.F. Egerton, Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope, Applied Physics Letters 111 (2017) 193106.
DOI: 10.1063/1.4990664
[84] G.J.C. Carpenter, Z.S. Wronski, M.W. Phaneuf, TEM study of nanopores and the embrittlement of CVD nickel foam, Materials Science and Technology 20 (2004) 1421-1426.
[85] G.W. Rubloff, TEM‐based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures, Small 4 (2008) 1223-1232.
[86] Q. Li, P. Du, Y. Yuan, W. Yao, Z. Ma, B. Guo, Y. Lyu, P. Wang, H. Wang, A. Nie, R. Shahbazian-Yassar, Real-time TEM study of nanopore evolution in battery materials and their suppression for enhanced cycling performance, Nano Letters 19 (2019) 3074-3082.
[87] M. Borrelli, G. Campilongo, S. Critelli, D.P. Ida, E. Perri, 3D nanopores modeling using TEM-tomography (dolostones-Upper Triassic), Marine and Petroleum Geology 99 (2019) 443-452.
[88] M.Y. Wu, P. Chen, U. Ziese, P.F. Alkemade, H.W. Salemink, H.W. Zandbergen, TEM study of locally coated nanopore fabricated by ion-beam-induced deposition in a thin membrane, Micron 41 (2010) 609-614.
[89] G.A. Chansin, J. Hong, J. Dusting, A.J. deMello, T. Albrecht, J.B. Edel, Resizing metal‐coated nanopores using a scanning electron microscope, Small 7 (2011) 2736-2741.
[90] A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova, L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining μXCT and FIB-SEM imaging, Solid Earth Discussions 12 (2020) 1-14.
DOI: 10.5194/se-2020-151
[91] B. Matthews, B. Arey, C. Barrett, T. Pope, FIB-SEM for nano-CT of tritiated LiAlO2 pellet nanopores, Microscopy and Microanalysis 26 (2020) 400-401.
[92] H. Fang, S. Sang, S. Liu, Y. Du, Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui basin, Journal of Petroleum Science and Engineering 182 (2019) 06285.
[93] S. Zhou, D. Liu, Y. Cai, Z. Karpyn, Y. Yao, Comparative analysis of nanopore structure and its effect on methane adsorption capacity of Southern Junggar coalfield coals by gas adsorption and FIB-SEM tomography, Microporous and Mesoporous Materials 272 (2018) 117-128.
[94] S. Zhou, G. Yan, H. Xue, W. Guo, X. Li, 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM, Marine and Petroleum Geology 73 (2016) 174-180.
[95] A. Holzinger, G. Neusser, B.J. Austen, A. Gamero-Quijano, G. Herzog, D.W. Arrigan, A. Ziegler, P. Walther, C. Kranz, Investigation of modified nanopore arrays using FIB/SEM tomography, Faraday Discussions 210 (2018) 113-130.
DOI: 10.1039/c8fd00019k
[96] S. Tong, Y. Dong, Q. Zhang, D. Elsworth, S. Liu, Quantitative analysis of nanopore structural characteristics of lower Paleozoic shale, Chongqing (Southwestern China): Combining FIB-SEM and NMR cryoporometry, Energy & Fuels 31 (2017) 13317-13328.
[97] D.C. Bell, Fabrication and application of nanopores using TEM, STEM and ion beams, Microscopy and Microanalysis 14 (2008) 244.
[98] J. Zhu, M. Guo, Y. Liu, X. Shi, F. Fan, M. Gu, H. Yang, In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires, ACS Applied Materials & Interfaces 11 (2019) 17313-17320.
[99] S. Prakash, M. Pinti, K. Bellman, Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope, Journal of Micromechanics and Microengineering 22 (2012) 067002.
[100] S. Liu, Q. Zhao, Q. Li, H. Zhang, L. You, J. Zhang, D. Yu, Controlled deformation of Si3N4 nanopores using focused electron beam in a transmission electron microscope, Nanotechnology 22 (2011) 115302.
[101] J. Menestrina, M. Wanunu, Z. Siwy, Rectification properties of low aspect ratio TEM drilled nanopores, Biophysical Journal 108 (2015) 172a.
[102] S.J. Chen, D.G. Howitt, B.C. Gierhart, R.L. Smith, S.D. Collins, Electron beam drilling of nanopores on silicon nitride membranes using a transmission electron microscope, Microscopy and Microanalysis 13 (2007) 534.
[103] H. Chang, S.M. Iqbal, E.A. Stach, A.H. King, N.J. Zaluzec, R. Bashir, Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope, Applied Physics Letters 88 (2006) 103109.
DOI: 10.1063/1.2179131
[104] B.J. Olanipekun, K. Azmy, Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: application of broad ion beam-scanning electron microscope (BIB-SEM), Marine and Petroleum Geology 74 (2016) 1-11.
[105] A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova, L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging, Solid Earth 12 (2021) 1-14.
DOI: 10.5194/se-12-1-2021
[106] Y. Gong, K. Liu, S. Liu, Determining the occurrence of oil in micro- / nanopores of tight sand: a new approach using environmental scanning electron microscopy combined with energy-dispersive spectrometry, Energy & Fuels 32 (2018) 4885-4893.
[107] A.S. Prabhu, K.J. Freedman, J.W. Robertson, Z. Nikolov, J.J. Kasianowicz, M.J. Kim, SEM-induced shrinking of solid-state nanopores for single molecule detection, Nanotechnology 22 (2011) 425302.
[108] Q. Chen, Y. Wang, T. Deng, Z. Liu, SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores, Nanotechnology 28 (2017) 305301.
[109] A.J. Storm, J. Chen, S. Ling, H. Zandbergen, C. Dekker, In-situ TEM fabrication of SiO2 nanopores for DNA translocation studies, APS March Meeting Abstracts (2003) S13-008.
[110] J. Kim, R. Maitra, K.D. Pedrotti, W.B. Dunbar, A patch-clamp ASIC for nanopore-based DNA analysis, IEEE Transactions on Biomedical Circuits And Systems 7 (2012) 285-295.
[111] J. Kim, K.D. Pedrotti, W.B. Dunbar, On-chip patch-clamp sensor for solid-state nanopore applications, Electronics Letters 47 (2011) 844-846.
DOI: 10.1049/el.2011.1515
[112] L. Plucinski, Y. Chen, G.L. Liu, A silicon nanopore device for on-chip patch clamp measurements of single ion channel activity, MRS Online Proceedings Library 1720 (2014) 29-32.
DOI: 10.1557/opl.2015.36
[113] J. Kim, G. Wang, W.B. Dunbar, K. Pedrotti, An integrated patch-clamp amplifier for ultra-low current measurement on solid-state nanopore, 2010 International SoC Design Conference (2010) 424-427).
[114] S. Howorka, Building membrane nanopores, Nature Nanotechnology 12 2017 619.
[115] S.P. Tan, X. Qiu, M. Dejam, H. Adidharma, Critical point of fluid confined in nanopores: experimental detection and measurement, Journal of Physical Chemistry C 123 (2019) 9824-9830.