Comparison of SEM-Assisted Nanoporometric and Microporometric Morphometric Techniques Applied for the Ultramicroporous Polymer Films

Article Preview

Abstract:

One of the most important applications of polymeric porous nanomaterials is the design of nanoporous structures for operation in patch-clamp systems allowing to establish a gigaohm contact, as well as for the measurements of biomolecules, informational macromolecules, including DNA, translocating through the nanopore arrays. Development of nanopore sequencing techniques leads to fundamentally new big data arrays, but their representativeness and validity, as well as the validity of counting of biomacromolecular particles based on ultramicropore arrays, strongly depends both on the pore size (in engineering lithography unimodal pore size distribution is optimal) and the accuracy of the size distribution measurements using instrumental methods. However, the former is unattainable when using soft matter or stretchable, plastic and elastic polymer materials and films, while the latter depends on the metrological parameters of the instrumental and algorithmic porosimetry techniques. Therefore in this paper the question about the applicability of polymer materials with pore arrays for the studies of biomacromolecules and bionanostructures is proposed to be answered using a comparative analysis of two different porosimetry approaches with the resolution not lower than electron microscopic one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

660-674

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach, Nanopore DNA sequencing with MspA, Proceedings of the National Academy of Sciences 107 (2010) 16060-16065.

DOI: 10.1073/pnas.1001831107

Google Scholar

[2] R.D. Maitra, J. Kim, W.B. Dunbar, Recent advances in nanopore sequencing, Electrophoresis 33 (2012) 3418-3428.

DOI: 10.1002/elps.201200272

Google Scholar

[3] N.J. Loman, M. Watson, Successful test launch for nanopore sequencing, Nature Methods 12 (2015). 303-304.

DOI: 10.1038/nmeth.3327

Google Scholar

[4] D.J. Burgess, Expanding applications for nanopore sequencing, Nature Reviews Genetics 21 (2020) 67.

Google Scholar

[5] H. Bayley, Nanopore sequencing: from imagination to reality, Clinical Chemistry 61 (2015) 25-31.

DOI: 10.1373/clinchem.2014.223016

Google Scholar

[6] A.C. Rand, M. Jain, J.M. Eizenga, A. Musselman-Brown, H.E. Olsen, M. Akeson, B. Paten, Mapping DNA methylation with high-throughput nanopore sequencing, Nature Methods 14 (2017) 411-413.

DOI: 10.1038/nmeth.4189

Google Scholar

[7] M.C. Schatz, Nanopore sequencing meets epigenetics, Nature Methods 14 (2017) 347-348.

DOI: 10.1038/nmeth.4240

Google Scholar

[8] N. Kono, K. Arakawa, Nanopore sequencing: review of potential applications in functional genomics, Development, Growth and Differentiation 61 (2019) 316-326.

DOI: 10.1111/dgd.12608

Google Scholar

[9] N.J. Loman, J. Quick, J. T. Simpson, A complete bacterial genome assembled de novo using only nanopore sequencing data, Nature Methods 12 (2015) 733-735.

DOI: 10.1038/nmeth.3444

Google Scholar

[10] E. van der Helm, L. Imamovic, M.M. Hashim Ellabaan, W. van Schaik, A. Koza, M.O. Sommer, Rapid resistome mapping using nanopore sequencing, Nucleic Acids Research 45 (2017) e61.

DOI: 10.1093/nar/gkw1328

Google Scholar

[11] W. Timp, U.M. Mirsaidov, D. Wang, J. Comer, A. Aksimentiev, G. Timp, Nanopore sequencing: electrical measurements of the code of life, IEEE Transactions on Nanotechnology 9 (2010) 281-294.

DOI: 10.1109/tnano.2010.2044418

Google Scholar

[12] Y. Li, R. Han, C. Bi, M. Li, S. Wang, X. Gao, DeepSimulator: a deep simulator for nanopore sequencing, Bioinformatics 34 (2018) 2899-2908.

DOI: 10.1093/bioinformatics/bty223

Google Scholar

[13] W. Makałowski, V. Shabardina, Bioinformatics of nanopore sequencing, Journal of Human Genetics 65 (2020) 61-67.

DOI: 10.1038/s10038-019-0659-4

Google Scholar

[14] S. Zhou, L. Wang, X. Chen, X. Guan, Label-free nanopore single-molecule measurement of trypsin activity, ACS Sensors 1 (2016) 607-613.

DOI: 10.1021/acssensors.6b00043

Google Scholar

[15] A.K. Thakur, L. Movileanu, Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore, Nature Biotechnology 37 (2019) 96-101.

DOI: 10.1038/nbt.4316

Google Scholar

[16] K. Freedman, A. Prabhu, P. Jemth, J. Edel, M. Kim, Protein unfolding and stability measurement using a solid-state nanopore, Biophysical Journal 102 (2012) 429a-430a.

DOI: 10.1016/j.bpj.2011.11.2352

Google Scholar

[17] S. Acharya, A. Jiang, C. Kuo, R. Nazarian, K. Li, A. Ma, B. Siegal, C. Toh, J.J. Schmidt, Improved measurement of proteins using a solid-state nanopore coupled with a hydrogel, ACS Sensors 5 (2020) 370-376.

DOI: 10.1021/acssensors.9b01928

Google Scholar

[18] J.M. Craig, A.H. Laszlo, H.D. Brinkerhoff, I.M. Derrington, M. Noakes, I.C. Nova, K.M. Doering, B.I. Tickman, N.F. De Leeuw, J.H. Gundlach, Direct single molecule measurement of ATP hydrolysis substates in HEL308 DNA helicase using nanopore tweezers, Biophysical Journal 112 (2017) 169a.

DOI: 10.1016/j.bpj.2016.11.935

Google Scholar

[19] M. Takemasa, M. Fujita, M. Maeda, 3I1422 Single molecular analysis of glycans and glycoproteins using a solid state nanopore, Seibutsu Butsuri 51 (2011) S138-S139.

DOI: 10.2142/biophys.51.s138_5

Google Scholar

[20] C.Y. Lee, Y.H. Hsiao, J.C. Yu, C.W. Hsu, C.H. Hsu, C. Chen, Measurement and modeling of the M13 bacteriophages transport in the conical-shaped nanopore, ECS Transactions 64 (2014) 51.

DOI: 10.1149/06416.0051ecst

Google Scholar

[21] J.S. Lee, J. Saharia, Y.N. Bandara, B.I. Karawdeniya, G. Goyal, A. Darvish, Q. Wang, M.J. Kim, M.J. Kim, Stiffness measurement of nanosized liposomes using solid‐state nanopore sensor with automated recapturing platform, Electrophoresis 40 (2019) 1337-1344.

DOI: 10.1002/elps.201800476

Google Scholar

[22] S. Shekar, D.J. Niedzwiecki, C.C. Chien, P. Ong, D.A. Fleischer, J. Lin, J.K. Rosenstein, M. Drndić, K.L. Shepard, Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal resolution, Nano Letters 16 (2016) 4483-4489.

DOI: 10.1021/acs.nanolett.6b01661

Google Scholar

[23] C.C. Chien, S. Shekar, D.J. Niedzwiecki, K.L. Shepard, M. Drndić, Single-stranded DNA translocation recordings through solid-state nanopores on glass chips at 10 MHz measurement bandwidth, ACS Nano 13 (2019) 10545-10554.

DOI: 10.1021/acsnano.9b04626

Google Scholar

[24] E.D. Adamovich, O.V. Gradov, Several types of modulation and representation of constellation diagrams in rapid NGS data analysis using technologies of signal-processing-based bioinformatics, Book of Abstracts of the 6th All-Russian Scientific-Practical Conference on Genomic Sequencing and Editing, Moscow, 2018, p.17.

Google Scholar

[25] M. Rhee, M.A. Burns, Nanopore sequencing technology: nanopore preparations, Trends in Biotechnology 25 (2007) 174-181.

DOI: 10.1016/j.tibtech.2007.02.008

Google Scholar

[26] H. Yamazaki, S. Kimura, M. Tsukahara, S. Ito, K. Esashika, T. Saiki, Highly sensitive measurement of single DNA translocation through an ultraviolet light spot on silicon nanopore, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XI 8954 (2014) 895407.

DOI: 10.1117/12.2036648

Google Scholar

[27] I. Shintaro, H. Yamazaki, M. Tsukahara, K. Esashika, T. Saiki, Measurement of salt dependence of single DNA translocation through Si nanopores with ultraviolet excitation, Biophysical Journal 108 (2015) 330a.

DOI: 10.1016/j.bpj.2014.11.1793

Google Scholar

[28] C. Wen, Z. Zhang, S.L. Zhang, Physical model for rapid and accurate determination of nanopore size via conductance measurement ACS Sensors 2 (2017) 1523-1530.

DOI: 10.1021/acssensors.7b00576

Google Scholar

[29] Y.N.D. Bandara, J.W. Nichols, B. Iroshika Karawdeniya, J.R. Dwyer, Conductance‐based profiling of nanopores: Accommodating fabrication irregularities, Electrophoresis 39 (2018) 626-634.

DOI: 10.1002/elps.201700299

Google Scholar

[30] L.J. Steinbock, R.D. Bulushev, S. Krishnan, C. Raillon, A. Radenovic, DNA translocation through low-noise glass nanopores, ACS Nano 7 (2013) 11255-11262.

DOI: 10.1021/nn405029j

Google Scholar

[31] R.M., Smeets, U.F. Keyser, N.H. Dekker, C. Dekker, Noise in solid-state nanopores, Proceedings of the National Academy of Sciences 105 (2008) 417-421.

DOI: 10.1073/pnas.0705349105

Google Scholar

[32] K.B. Park, H.J. Kim, H.M. Kim, S.A. Han, K.H. Lee, S.W. Kim, K.B. Kim, Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate, Nanoscale 8 (2016) 5755-5763.

DOI: 10.1039/c5nr09085g

Google Scholar

[33] V. Tabard-Cossa, D. Trivedi, M. Wiggin, N.N. Jetha, A. Marziali, Noise analysis and reduction in solid-state nanopores, Nanotechnology 18 (2007) 305505.

DOI: 10.1088/0957-4484/18/30/305505

Google Scholar

[34] T.R. Wojcik, D. Krapf, Solid-state nanopore recognition and measurement using Shannon entropy, IEEE Photonics Journal 3 (2011) 337-343.

DOI: 10.1109/jphot.2011.2129503

Google Scholar

[35] S.F. Knowles, U.F. Keyser, A.L. Thorneywork, Noise properties of rectifying and non-rectifying nanopores, Nanotechnology 31 (2019) 10LT01.

DOI: 10.1088/1361-6528/ab5be3

Google Scholar

[36] R.M.M. Smeets, N.H. Dekker, C. Dekker, Low-frequency noise in solid-state nanopores, Nanotechnology 20 (2009) 095501.

DOI: 10.1088/0957-4484/20/9/095501

Google Scholar

[37] C. Wen, S. Zeng, K. Arstila, T. Sajavaara, Y. Zhu, Z. Zhang, S.L. Zhang, Generalized noise study of solid-state nanopores at low frequencies, ACS Sensors 2 (2017) 300-307.

DOI: 10.1021/acssensors.6b00826

Google Scholar

[38] S. Gravelle, R.R. Netz, L. Bocquet, Adsorption kinetics in open nanopores as a source of low-frequency noise, Nano Letters 19 (2019) 7265-7272.

DOI: 10.1021/acs.nanolett.9b02858

Google Scholar

[39] O. Patil, D. Manikandan, V.V. Nandigana, A molecular dynamics simulation framework for predicting noise in solid-state nanopores, Molecular Simulation 46 (2020) 1011-1016.

DOI: 10.1080/08927022.2020.1798004

Google Scholar

[40] E. Beamish, H. Kwok, V. Tabard-Cossa, M. Godin, Precise control of the size and noise of solid-state nanopores using high electric fields, Nanotechnology 23 (2012) 405301.

DOI: 10.1088/0957-4484/23/40/405301

Google Scholar

[41] Z. Siwy, A. Fuliński, 1/f noise in ion transport through nanopores: origins and mechanism, AIP Conference Proceedings 665 (2003) 273-282.

DOI: 10.1063/1.1584901

Google Scholar

[42] J. Saharia, Y.N.D. Bandara, B.I. Karawdeniya, G. Alexandrakis, M.J. Kim, Assessment of 1/f noise associated with nanopores fabricated through chemically‐tuned controlled dielectric breakdown, Electrophoresis (2020) [in press].

DOI: 10.1002/elps.202000285

Google Scholar

[43] A. Fragasso, S. Pud, C. Dekker, 1/f noise in solid-state nanopores is governed by access and surface regions, Nanotechnology 30 (2019) 395202.

DOI: 10.1088/1361-6528/ab2d35

Google Scholar

[44] M.R. Powell, I. Vlassiouk, C. Martens, Z.S. Siwy, Nonequilibrium 1/f noise in rectifying nanopores, Physical Review Letters 103 (2009) 248104.

DOI: 10.1103/physrevlett.103.248104

Google Scholar

[45] S. Su, X. Guo, Y. Fu, Y. Xie, X. Wang, J. Xue, Origin of nonequilibrium 1/f noise in solid-state nanopores, Nanoscale 12 (2020) 8975-8981.

DOI: 10.1039/c9nr09829a

Google Scholar

[46] O.V. Gradov, Instruments of nuclear electrophysiology in the analysis of kinetic phases of the local chromatin packaging, Book of Abstracts Chromosome-2015,, Novosibirsk, Russia, 2015, pp.80-81.

Google Scholar

[47] S.F. Timashev, Flicker noise spectroscopy and its application: Information hidden in chaotic signals, Russian Journal of Electrochemistry 42 2006 424-466.

DOI: 10.1134/s102319350605003x

Google Scholar

[48] C. Tasserit, A. Koutsioubas, D. Lairez, G. Zalczer, M.C. Clochard, Pink noise of ionic conductance through single artificial nanopores revisited, Physical Review Letters 105 (2010) 260602.

DOI: 10.1103/physrevlett.105.260602

Google Scholar

[49] L.J. De Vreede, C. Ying, J. Houghtaling, J.F. Da Silva, A.R. Hall, A. Lovera, M. Mayer, Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores, Nanotechnology 30 (2019) 265301.

DOI: 10.1088/1361-6528/ab0e2a

Google Scholar

[50] J.A. Bafna, G.V. Soni, Fabrication of low noise borosilicate glass nanopores for single molecule sensing, PloS One 11 (2016) e0157399.

DOI: 10.1371/journal.pone.0157399

Google Scholar

[51] M.J. Kim, M. Wanunu, D.C. Bell, A. Meller, Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis, Advanced Materials 18 (2006) 3149-3153.

DOI: 10.1002/adma.200601191

Google Scholar

[52] A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision, Nature Materials 2 (2003) 537-540.

DOI: 10.1038/nmat941

Google Scholar

[53] J. Kudr, S. Skalickova, L. Nejdl, A. Moulick, B. Ruttkay–Nedecky, V. Adam, R. Kizek, Fabrication of solid‐state nanopores and its perspectives, Electrophoresis 36 (2015) 2367-2379.

DOI: 10.1002/elps.201400612

Google Scholar

[54] D. Xia, C. Huynh, S. McVey, A. Kobler, L. Stern, Z. Yuan, X.S. Ling, Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope, Nanoscale 10 (2018) 5198-5204.

DOI: 10.1039/c7nr08406d

Google Scholar

[55] J.C. Arnault, D. Eon, C. Hébert, D. Carole, F. Omnes, E. Gheeraert, Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores, Carbon 59 (2013) 448-456.

DOI: 10.1016/j.carbon.2013.03.038

Google Scholar

[56] P.Y. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, A. Presz, B.A. Sartowska, Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles, Nanotechnology 18 (2007) 305302.

DOI: 10.1088/0957-4484/18/30/305302

Google Scholar

[57] R. Wei, D. Pedone, A. Zürner, M. Döblinger, U. Rant, Fabrication of metallized nanopores in silicon nitride membranes for single‐molecule sensing, Small 6 (2010) 1406-1414.

DOI: 10.1002/smll.201000253

Google Scholar

[58] K.M. Alam, A.P. Singh, S.C. Bodepudi, S.Pramanik, Fabrication of hexagonally ordered nanopores in anodic alumina: An alternative pretreatment, Surface Science 605 (2011) 441-449.

DOI: 10.1016/j.susc.2010.11.015

Google Scholar

[59] S.R. Park, H. Peng, X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching, Small 3 (2007) 116-119.

DOI: 10.1002/smll.200600268

Google Scholar

[60] Q. Chen, Y. Wang, T. Deng, Z. Liu, Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method, Nanotechnology 29 (2018) 085301.

DOI: 10.1088/1361-6528/aaa523

Google Scholar

[61] W. Zhang, D. Zhang, T. Fan, J. Ding, Q. Guo, H. Ogawa, Fabrication of ZnO microtubes with adjustable nanopores on the walls by the templating of butterfly wing scales, Nanotechnology 17 (2006) 840.

DOI: 10.1088/0957-4484/17/3/038

Google Scholar

[62] M. Yemini, B. Hadad, Y. Liebes, A. Goldner, N. Ashkenasy, The controlled fabrication of nanopores by focused electron-beam-induced etching, Nanotechnology 20 (2009) 245302.

DOI: 10.1088/0957-4484/20/24/245302

Google Scholar

[63] A.T. Kuan, B. Lu, P. Xie, T. Szalay, J.A. Golovchenko, Electrical pulse fabrication of graphene nanopores in electrolyte solution, Applied Physics Letters 106 (2015) 203109.

DOI: 10.1063/1.4921620

Google Scholar

[64] Z.Y. Zhang, Y.S. Deng, H.B. Tian, H. Yan, H.L. Cui, D.Q. Wang, Noise analysis of monolayer graphene nanopores, International Journal of Molecular Sciences 19 (2018)2639.

DOI: 10.3390/ijms19092639

Google Scholar

[65] S.J. Heerema, G.F. Schneider, M. Rozemuller, L. Vicarelli, H.W. andbergen, C. Dekker, 1/f noise in graphene nanopores, Nanotechnology 26 (2015) 074001.

DOI: 10.1088/0957-4484/26/7/074001

Google Scholar

[66] J.D. Uram, K. Ke, M. Mayer, Noise and bandwidth of current recordings from submicrometer pores and nanopores, ACS Nano 2 (2008) 857-872.

DOI: 10.1021/nn700322m

Google Scholar

[67] K. Ito, Y. Kobayashi, Variable-energy positron annihilation as highly sensitive nanoporosimetry for porous thin films, Acta Phys. Pol. A 107 (2005) 717-723.

DOI: 10.12693/aphyspola.107.717

Google Scholar

[68] Y. Jannot, A. Degiovanni, M. Camus, Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation, Review of Scientific Instruments 89, (2018) 044904.

DOI: 10.1063/1.5020117

Google Scholar

[69] J. Zhang, Y. Tang, D. He, P. Sun, X. Zou, Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry, Applied Clay Science 196 (2020) 105758.

DOI: 10.1016/j.clay.2020.105758

Google Scholar

[70] T.M. Petrova, Y.N. Ponomarev, A.A. Solodov, A.M. Solodov, A.F. Danilyuk, Spectroscopic nanoporometry of aerogel, JETP Letters 101 (2015) 65-67.

DOI: 10.1134/s0021364015010117

Google Scholar

[71] C. Gao, R. Xu, P. Jiang, H. Xue, The shale-gas permeability measurement considering the rarefaction effect on transport mechanism in the nanopores, Procedings of the International Petroleum Technology Conference (2013) cp-350.

DOI: 10.2523/iptc-16944-ms

Google Scholar

[72] A.M. Popa, S. Angeloni, T. Burgi, J.A. Hubbell, H. Heinzelmann, R. Pugin, Dynamic perspective on the function of thermoresponsive nanopores from in situ AFM and ATR-IR investigations, Langmuir 26, (2010) 15356-15365.

DOI: 10.1021/la102611k

Google Scholar

[73] L.S. Connelly, B. Meckes, J. Larkin, A.L. Gillman, M. Wanunu, R. Lal, Graphene nanopore support system for simultaneous high-resolution AFM imaging and conductance measurements, ACS Applied Materials & Interfaces 6 (2014) 5290-5296.

DOI: 10.1021/am500639q

Google Scholar

[74] V.N. Sokolov, O.V. Razgulina, V.V. Privesentsev, D.V. Petrov, Computer analysis of the AFM images of the nanopore system on the SiO2/Si structure surface, obtained by Zn ion implantation, Bulletin of the Russian Academy of Sciences: Physics 78 (2014) 859-863.

DOI: 10.3103/s1062873814090287

Google Scholar

[75] X. Liu, D. Song, X. He, Z. Wang, M. Zeng, K. Deng, Nanopore structure of deep-burial coals explored by AFM, Fuel 246 (2019) 9-17.

DOI: 10.1016/j.fuel.2019.02.090

Google Scholar

[76] M.C. Acharjee, H. Li, B. Ma, S. Tung, J. Li, Detection of tubulin and TAU proteins aggregations using solid-state nanopore and atomic force microscopy (AFM), Biophysical Journal 118 (2020) 474a.

DOI: 10.1016/j.bpj.2019.11.2628

Google Scholar

[77] T. Schlotter, S. Weaver, T. Zambelli, J. Voros, M. Aramesh, Force-controlled Nanopores for single cell measurements using micro-channelled AFM cantilevers, Biophysical Journal 118 (2020) 174a.

DOI: 10.1016/j.bpj.2019.11.1066

Google Scholar

[78] S. Jugade, S. Pal, M. Varma, A. Naik, Capillary condensation in peak force AFM imaging of nanopores, Bulletin of the American Physical Society (2021) [in press].

Google Scholar

[79] A. Gadaleta, A.L. Biance, A. Siria, L. Bocquet, Ultra-sensitive flow measurement in individual nanopores through pressure–driven particle translocation, Nanoscale 7 (2015) 7965-7970.

DOI: 10.1039/c4nr07468h

Google Scholar

[80] B. Goldstein, D. Kim, M. Magoch, Y. Astier, E. Culurciello, CMOS low current measurement system for nanopore sensing applications, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2011) 265-268.

DOI: 10.1109/biocas.2011.6107778

Google Scholar

[81] R. Gao, Y.L. Ying, B.Y. Yan, Y.T. Long, An integrated current measurement system for nanopore analysis, Chinese Science Bulletin 59 (2014) 4968-4973.

DOI: 10.1007/s11434-014-0656-0

Google Scholar

[82] L.J. De Vreede, C. Ying, J. Houghtaling, J.F. Da Silva, A.R. Hall, A. Lovera, M. Mayer, Wafer-scale fabrication of fused silica chips for low-noise recording of resistive pulses through nanopores, Nanotechnology 30 (2019) 265301.

DOI: 10.1088/1361-6528/ab0e2a

Google Scholar

[83] H. Qian, R.F. Egerton, Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope, Applied Physics Letters 111 (2017) 193106.

DOI: 10.1063/1.4990664

Google Scholar

[84] G.J.C. Carpenter, Z.S. Wronski, M.W. Phaneuf, TEM study of nanopores and the embrittlement of CVD nickel foam, Materials Science and Technology 20 (2004) 1421-1426.

DOI: 10.1179/026708304x4321

Google Scholar

[85] G.W. Rubloff, TEM‐based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures, Small 4 (2008) 1223-1232.

DOI: 10.1002/smll.200700815

Google Scholar

[86] Q. Li, P. Du, Y. Yuan, W. Yao, Z. Ma, B. Guo, Y. Lyu, P. Wang, H. Wang, A. Nie, R. Shahbazian-Yassar, Real-time TEM study of nanopore evolution in battery materials and their suppression for enhanced cycling performance, Nano Letters 19 (2019) 3074-3082.

DOI: 10.1021/acs.nanolett.9b00491

Google Scholar

[87] M. Borrelli, G. Campilongo, S. Critelli, D.P. Ida, E. Perri, 3D nanopores modeling using TEM-tomography (dolostones-Upper Triassic), Marine and Petroleum Geology 99 (2019) 443-452.

DOI: 10.1016/j.marpetgeo.2018.10.049

Google Scholar

[88] M.Y. Wu, P. Chen, U. Ziese, P.F. Alkemade, H.W. Salemink, H.W. Zandbergen, TEM study of locally coated nanopore fabricated by ion-beam-induced deposition in a thin membrane, Micron 41 (2010) 609-614.

DOI: 10.1016/j.micron.2010.03.009

Google Scholar

[89] G.A. Chansin, J. Hong, J. Dusting, A.J. deMello, T. Albrecht, J.B. Edel, Resizing metal‐coated nanopores using a scanning electron microscope, Small 7 (2011) 2736-2741.

DOI: 10.1002/smll.201101015

Google Scholar

[90] A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova, L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining μXCT and FIB-SEM imaging, Solid Earth Discussions 12 (2020) 1-14.

DOI: 10.5194/se-2020-151

Google Scholar

[91] B. Matthews, B. Arey, C. Barrett, T. Pope, FIB-SEM for nano-CT of tritiated LiAlO2 pellet nanopores, Microscopy and Microanalysis 26 (2020) 400-401.

DOI: 10.1017/s143192762001452x

Google Scholar

[92] H. Fang, S. Sang, S. Liu, Y. Du, Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui basin, Journal of Petroleum Science and Engineering 182 (2019) 06285.

DOI: 10.1016/j.petrol.2019.106285

Google Scholar

[93] S. Zhou, D. Liu, Y. Cai, Z. Karpyn, Y. Yao, Comparative analysis of nanopore structure and its effect on methane adsorption capacity of Southern Junggar coalfield coals by gas adsorption and FIB-SEM tomography, Microporous and Mesoporous Materials 272 (2018) 117-128.

DOI: 10.1016/j.micromeso.2018.06.027

Google Scholar

[94] S. Zhou, G. Yan, H. Xue, W. Guo, X. Li, 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM, Marine and Petroleum Geology 73 (2016) 174-180.

DOI: 10.1016/j.marpetgeo.2016.02.033

Google Scholar

[95] A. Holzinger, G. Neusser, B.J. Austen, A. Gamero-Quijano, G. Herzog, D.W. Arrigan, A. Ziegler, P. Walther, C. Kranz, Investigation of modified nanopore arrays using FIB/SEM tomography, Faraday Discussions 210 (2018) 113-130.

DOI: 10.1039/c8fd00019k

Google Scholar

[96] S. Tong, Y. Dong, Q. Zhang, D. Elsworth, S. Liu, Quantitative analysis of nanopore structural characteristics of lower Paleozoic shale, Chongqing (Southwestern China): Combining FIB-SEM and NMR cryoporometry, Energy & Fuels 31 (2017) 13317-13328.

DOI: 10.1021/acs.energyfuels.7b02391

Google Scholar

[97] D.C. Bell, Fabrication and application of nanopores using TEM, STEM and ion beams, Microscopy and Microanalysis 14 (2008) 244.

DOI: 10.1017/s1431927608086261

Google Scholar

[98] J. Zhu, M. Guo, Y. Liu, X. Shi, F. Fan, M. Gu, H. Yang, In situ TEM of phosphorus-dopant-induced nanopore formation in delithiated silicon nanowires, ACS Applied Materials & Interfaces 11 (2019) 17313-17320.

DOI: 10.1021/acsami.8b20436

Google Scholar

[99] S. Prakash, M. Pinti, K. Bellman, Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope, Journal of Micromechanics and Microengineering 22 (2012) 067002.

DOI: 10.1088/0960-1317/22/6/067002

Google Scholar

[100] S. Liu, Q. Zhao, Q. Li, H. Zhang, L. You, J. Zhang, D. Yu, Controlled deformation of Si3N4 nanopores using focused electron beam in a transmission electron microscope, Nanotechnology 22 (2011) 115302.

DOI: 10.1088/0957-4484/22/11/115302

Google Scholar

[101] J. Menestrina, M. Wanunu, Z. Siwy, Rectification properties of low aspect ratio TEM drilled nanopores, Biophysical Journal 108 (2015) 172a.

DOI: 10.1016/j.bpj.2014.11.947

Google Scholar

[102] S.J. Chen, D.G. Howitt, B.C. Gierhart, R.L. Smith, S.D. Collins, Electron beam drilling of nanopores on silicon nitride membranes using a transmission electron microscope, Microscopy and Microanalysis 13 (2007) 534.

DOI: 10.1017/s1431927607074910

Google Scholar

[103] H. Chang, S.M. Iqbal, E.A. Stach, A.H. King, N.J. Zaluzec, R. Bashir, Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope, Applied Physics Letters 88 (2006) 103109.

DOI: 10.1063/1.2179131

Google Scholar

[104] B.J. Olanipekun, K. Azmy, Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: application of broad ion beam-scanning electron microscope (BIB-SEM), Marine and Petroleum Geology 74 (2016) 1-11.

DOI: 10.1016/j.marpetgeo.2016.03.029

Google Scholar

[105] A. Jacob, M. Peltz, S. Hale, F. Enzmann, O. Moravcova, L.N. Warr, G. Grathoff, P. Blum, M. Kersten, Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging, Solid Earth 12 (2021) 1-14.

DOI: 10.5194/se-12-1-2021

Google Scholar

[106] Y. Gong, K. Liu, S. Liu, Determining the occurrence of oil in micro- / nanopores of tight sand: a new approach using environmental scanning electron microscopy combined with energy-dispersive spectrometry, Energy & Fuels 32 (2018) 4885-4893.

DOI: 10.1021/acs.energyfuels.8b00174

Google Scholar

[107] A.S. Prabhu, K.J. Freedman, J.W. Robertson, Z. Nikolov, J.J. Kasianowicz, M.J. Kim, SEM-induced shrinking of solid-state nanopores for single molecule detection, Nanotechnology 22 (2011) 425302.

DOI: 10.1088/0957-4484/22/42/425302

Google Scholar

[108] Q. Chen, Y. Wang, T. Deng, Z. Liu, SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores, Nanotechnology 28 (2017) 305301.

DOI: 10.1088/1361-6528/aa77ad

Google Scholar

[109] A.J. Storm, J. Chen, S. Ling, H. Zandbergen, C. Dekker, In-situ TEM fabrication of SiO2 nanopores for DNA translocation studies, APS March Meeting Abstracts (2003) S13-008.

Google Scholar

[110] J. Kim, R. Maitra, K.D. Pedrotti, W.B. Dunbar, A patch-clamp ASIC for nanopore-based DNA analysis, IEEE Transactions on Biomedical Circuits And Systems 7 (2012) 285-295.

DOI: 10.1109/tbcas.2012.2200893

Google Scholar

[111] J. Kim, K.D. Pedrotti, W.B. Dunbar, On-chip patch-clamp sensor for solid-state nanopore applications, Electronics Letters 47 (2011) 844-846.

DOI: 10.1049/el.2011.1515

Google Scholar

[112] L. Plucinski, Y. Chen, G.L. Liu, A silicon nanopore device for on-chip patch clamp measurements of single ion channel activity, MRS Online Proceedings Library 1720 (2014) 29-32.

DOI: 10.1557/opl.2015.36

Google Scholar

[113] J. Kim, G. Wang, W.B. Dunbar, K. Pedrotti, An integrated patch-clamp amplifier for ultra-low current measurement on solid-state nanopore, 2010 International SoC Design Conference (2010) 424-427).

DOI: 10.1109/socdc.2010.5682879

Google Scholar

[114] S. Howorka, Building membrane nanopores, Nature Nanotechnology 12 2017 619.

Google Scholar

[115] S.P. Tan, X. Qiu, M. Dejam, H. Adidharma, Critical point of fluid confined in nanopores: experimental detection and measurement, Journal of Physical Chemistry C 123 (2019) 9824-9830.

DOI: 10.1021/acs.jpcc.9b00299

Google Scholar