[1]
Sureshkumar, M., Filipp, S., Polacco, G., Kazatchkov, I., Stastna, J. and Zanzotto, L. (2010). Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. European Polymer Journal, 46(4), 621-633.
DOI: 10.1016/j.eurpolymj.2009.12.024
Google Scholar
[2]
Fang, C., Yu, R., Liu, S. and Li, Y. (2013). Nanomaterials Applied in Asphalt Modification: A Review. Journal of Materials Science and Technology, 29(7), 589-594.
DOI: 10.1016/j.jmst.2013.04.008
Google Scholar
[3]
Yao, H., You, Z., Li, L., Goh, S.W., Lee, C.H., Yap, Y.K. and Shi, X. (2013). Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Construction and Building Materials, 38 (January 2013), 327–337.
DOI: 10.1016/j.conbuildmat.2012.08.004
Google Scholar
[4]
El-Shafie, M., Ibrahim, I.M. and Abd El Rahman, A.M.M. (2012). The addition effects of macro and nano clay on the performance of asphalt binder. Egyptian Journal of Petroleum, 21,149-154.
DOI: 10.1016/j.ejpe.2012.11.008
Google Scholar
[5]
Pavement Interactive. (2008). Asphalt modifiers, (published 21 July 2008. https://www.pavementinteractive.org/article/materialsasphalt/, (accessed 24 October 2016).
Google Scholar
[6]
Polacco, G., Krˇízˇ, P., Filippi, S., Stastna, J., Biondi, D. and Zanzotto, L. (2008). Rheological properties of asphalt/SBS/clay blends. European Polymer Journal, 44 (11), 3512–3521.
DOI: 10.1016/j.eurpolymj.2008.08.032
Google Scholar
[7]
Abdullah, M., Zamhari, K., Buhari, R., Kamaruddin, N., Nayan, N., Hainin, M., Hassan, N., Jaya, R. and Yusoff, N. (2015). A Review on The Exploration of Nanomaterials Application in Pavement Engineering. Journal Technology (Sciences & Engineering), 73(4), 69–76.
DOI: 10.11113/jt.v73.4291
Google Scholar
[8]
Faramarzi, M., Arabani, M., Haghi, A. and Motaghitalab, V. (2013). A Study on the Effects of CNT's on Hot Mix Asphalt Marshal-Parameters. Proceeding of the 7th International Symposium on Advances in Science and Technology, Bandar-Abbas, Iran; 7-8 March, (2013).
Google Scholar
[9]
Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science, 500(1-3), 218–241.
Google Scholar
[10]
Santagata, E., Baglieri, O., Tsantilis, L., Dalmazzo, D. (2012). Rheological Characterization of Bituminous Binders Modified with Carbon Nanotubes. Social and Behavioral Sciences, 53, 546 – 555.
DOI: 10.1016/j.sbspro.2012.09.905
Google Scholar
[11]
Shirakawa, T., Tada, A. and Okazaki, N. (2012). Development of Functional Carbon Nanotubes -Asphalt Composites. International Journal of GEOMATE, 2(1), 161-165.
DOI: 10.21660/2012.3.3q
Google Scholar
[12]
Xiao, F., Amirkhanian, A. and Amirkhanian, S. (2014). Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles. International Journal of Pavement Engineering, 12 (6), 533-541.
DOI: 10.1080/10298436.2011.560267
Google Scholar
[13]
Khattak, M., Khattab, A.and Rizvi, H. (2013). Characterization of carbon nano-fiber modified hot mix asphalt mixtures. Construction and Building Materials, 40, 738-745.
DOI: 10.1016/j.conbuildmat.2012.11.034
Google Scholar
[14]
Pirmohammad, S., Majd-Shokorlou, Y., & Amani, B. (2019). Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes. Road Materials and Pavement Design, 1-23.
DOI: 10.1080/14680629.2019.1608289
Google Scholar
[15]
Sheng, X., Xu, T., & Wang, M. (2020). Preparation, shape memory performance and microstructures of emulsified asphalt modified by multi-walled carbon nanotubes. Construction and Building Materials, 230, 116954.
DOI: 10.1016/j.conbuildmat.2019.116954
Google Scholar