Compressive Behavior of ME20M Magnesium Alloy at Low Temperatures

Article Preview

Abstract:

The compressive behavior of ME20M alloy along rolling direction (RD) at a wide strain rates under low temperatures is investigated in this paper. Compressive stress-strain results reveal that the effect of strain rate on yield strength and flow stress is not obvious, especially at low temperatures. Moreover, the temperature plays an important role in compressive responses. SEM observations indicate that brittle fracture is the main fracture mode at low strain rate, and ductile fracture occurs in the failure of the alloy at high strain rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-19

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, M. Knezevic, Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy, International Journal of Plasticity 83 (2016) 90-109.

DOI: 10.1016/j.ijplas.2016.04.005

Google Scholar

[2] F. Kabirian, A.S. Khan, T. Gnäupel-Herlod, Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions, International Journal of Plasticity 68 (2015) 1-20.

DOI: 10.1016/j.ijplas.2014.10.012

Google Scholar

[3] H. Wang, P. Wu, S. Kurukuri, M.J. Worswick, Y. Peng, D. Tang, D. Li, Strain rate sensitivities of deformation mechanisms in magnesium alloys, International Journal of Plasticity 107 (2018) 207-222.

DOI: 10.1016/j.ijplas.2018.04.005

Google Scholar

[4] Z. Cai, F. Chen, J. Guo, Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain, Journal of Alloys and Compounds 648 (2015) 215-222.

DOI: 10.1016/j.jallcom.2015.06.257

Google Scholar

[5] M.S. Arun, U. Chakkingal, A constitutive model to describe high temperature flow behavior of AZ31B magnesium alloy processed by equal-channel angular pressing, Materials Science and Engineering: A 754 (2019) 659-673.

DOI: 10.1016/j.msea.2019.03.106

Google Scholar

[6] S. Kurukuri, M.J. Worswick, D. Ghaffari Tari, R.K. Mishra, J.T. Carter, Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet, Philos Trans A Math Phys Eng Sci 372(2015) (2014) 20130216.

DOI: 10.1098/rsta.2013.0216

Google Scholar

[7] Y. Liu, P. Mao, F. Zhang, Z. Liu, Z. Wang, Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation, Philosophical Magazine 98(12) (2018) 1068-1086.

DOI: 10.1080/14786435.2018.1427896

Google Scholar

[8] J.W. Lu, D.D. Yin, G.H. Huang, G.F. Quan, Y. Zeng, H. Zhou, Q.D. Wang, Plastic anisotropy and deformation behavior of extruded Mg-Y sheets at elevated temperatures, Materials Science and Engineering: A 700 (2017) 598-608.

DOI: 10.1016/j.msea.2017.06.047

Google Scholar

[9] L. Zhao, G. Ma, P. Jin, Z. Yu, Role of Y on the microstructure, texture and mechanical properties of Mg–Zn–Zr alloys by powder metallurgy, Journal of Alloys and Compounds 810 (2019) 151843.

DOI: 10.1016/j.jallcom.2019.151843

Google Scholar

[10] L. Mao, C. Liu, T. Chen, Y. Gao, S. Jiang, R. Wang, Twinning behavior in a rolled Mg-Al-Zn alloy under dynamic impact loading, Scripta Materialia 150 (2018) 87-91.

DOI: 10.1016/j.scriptamat.2018.03.005

Google Scholar

[11] G. Wan, B.L. Wu, Y.H. Zhao, Y.D. Zhang, C. Esling, Strain-rate sensitivity of textured Mg–3.0Al–1.0Zn alloy (AZ31) under impact deformation, Scripta Materialia 65(6) (2011) 461-464.

DOI: 10.1016/j.scriptamat.2011.05.020

Google Scholar

[12] X. Li, T. Al-Samman, G. Gottstein, Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling, Materials & Design 32(8-9) (2011) 4385-4393.

DOI: 10.1016/j.matdes.2011.03.079

Google Scholar

[13] F.A. Mirza, K. Wang, S.D. Bhole, J. Friedman, D.L. Chen, D.R. Ni, B.L. Xiao, Z.Y. Ma, Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy, Materials Science and Engineering: A 661 (2016) 115-125.

DOI: 10.1016/j.msea.2016.03.024

Google Scholar

[14] S.A. Habib, A.S. Khan, T. Gnäupel-Herold, J.T. Lloyd, S.E. Schoenfeld, Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling, International Journal of Plasticity 95 (2017) 163-190.

DOI: 10.1016/j.ijplas.2017.04.006

Google Scholar

[15] M. Jahedi, B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, M. Knezevic, Rate and temperature dependent deformation behavior of as-cast WE43 magnesium-rare earth alloy manufactured by direct-chill casting, Materials Science and Engineering: A 712 (2018) 50-64.

DOI: 10.1016/j.msea.2017.11.092

Google Scholar

[16] Q. Zhang, J. Zhang, Y. Wang, Effect of strain rate on the tension–compression asymmetric responses of Ti–6.6Al–3.3Mo–1.8Zr–0.29Si, Materials & Design 61 (2014) 281-285.

DOI: 10.1016/j.matdes.2014.05.004

Google Scholar