Electrochemical Fabrication of Porous Interconnected Copper Foam

Article Preview

Abstract:

An interconnected copper network or copper foam was successfully fabricated by electrochemical deposition using polyethylene glycol (PEG) and sodium bromide (NaBr) as additives. Both the amount of PEG and the current density were varied to obtain a Cu foam with the smallest pore diameter and wall thickness. The increasing amount of PEG resulted in a decrease in pore diameter. However, the wall thickness of the Cu network was increased. At 800 mg/L PEG and 20 mM NaBr, the average pore size of the foam was about 11.03 µm. Dendritic formation was also observed on the walls of the Cu foam. Further, higher current density resulted in increased dendritic growth. X-ray diffraction confirms that the Cu foam was spontaneously oxidized in air, leading to the formation of cuprous oxide (Cu2O).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IUPAC Compendium of Chemical Terminology (Eds.: A. D. Mc-Naught, A. Wilkinson), Blackwell Scientific Publications, Oxford, 2nd ed, (1997).

Google Scholar

[2] S. Vesztergom, A. Dutta, M. Rahaman, K. Kiran, I.Z. Montiel, and P. Broekmann: Chem Cat. Chem. Vol. 12 (2020), pp.1-21.

Google Scholar

[3] A. Manonukul, N. Muenya, F. Leaux, and S. Amaranan: J. Mater. Process. Tech. Vol. 210 (2010), pp.529-535.

Google Scholar

[4] D.-H. Yang, B.-Y. Hur, and S.-R. Yang: J. Alloys Compounds, Vol. 461 (2008), pp.221-227.

Google Scholar

[5] S.T.W. Kuruneru, K. Vafai, E. Sauret, and Y.T. Gu: Chem. Eng. Sci. Vol. 228 (2020), 115968.

Google Scholar

[6] Y. Liu, D. Yang, Z. Liu, and J.-H. Yang: J. Power Sources, Vol. 461 (2020), 228165.

Google Scholar

[7] B. Wu, H. Qian, Z. Nie, Z. Luo, Z. Wu, P. Liu, H. He, J. Wu, S. Chen, F. Zhang: J. Energy Chem., Vol. 46 (2020), pp.178-186.

Google Scholar

[8] M.D.L. Balela, R.E. Masirag, F.C. Pacariem, and J.M.D. Taguinod: Key Eng. Mater. Vol. 880 (2021), pp.83-88.

DOI: 10.4028/www.scientific.net/kem.880.83

Google Scholar

[9] E.M.A. Espejo and M.D. Balela: Solid State Phenom. Vol. 266 (2017), pp.105-109.

Google Scholar

[10] E.M.A. Espejo and M.D. Balela: IOP Conf. Series: Mater. Sci. Eng. Vol. 201 (2017), 012050.

Google Scholar

[11] K. Nagai, D. Wada, M. Nakai, and T. Norimatsu: Fusion Sci. Tech. Vol. 49 (2006), pp.686-690.

Google Scholar

[12] W. Zhang, C. Ding, A. Wang, and Y. Zeng: J. Electrochem. Soc. Vol. 162 (2015), p. D365-D370.

Google Scholar

[13] Y. Li, W. Jia, Y. Song, and X. Xia: Chem. Mater. Vol. 19 (2007), pp.5758-5764.

Google Scholar

[14] Y.S. Park, W.-S. Choi, M.J. Jang, J.H. Lee, S. Park, H. Jin, M.H. Seo, K.-H. Lee, Y. Yin, Y. Kim, J. Yang, and S.M. Choi: ACS Sustainable Chem. Eng. Vol. 7 (2019), pp.10734-10741.

DOI: 10.1021/acssuschemeng.9b01426

Google Scholar

[15] K.I. Siwek, S. Eugenio, D.M.F. Santos, M.T. Silva, and M.F. Montemor: J. Inter. Hydrogen Energy, Vol. 44 (2019), pp.1701-1709.

Google Scholar

[16] K. Tan, M. Tian, and Q. Cai: Thin Solid Films Vol. 518 (2010), p.5159–5163.

Google Scholar

[17] H. Shin and M. Liu: Chem. Mater. Vol. 16 (2004), pp.5460-5464.

Google Scholar

[18] B. Luo, X. Li, X. Li, and W. Feng: Asian J. Chem. Vol. 25 (2013), pp.9927-930.

Google Scholar

[19] E.S. De Preval, D. Fabrice, M. Gilles, C. Gérard, and M. Samir, Colloids and Surfaces A: Physicochem. Eng Aspects, Vol. 442 (2014), pp.88-97.

DOI: 10.1016/j.colsurfa.2013.05.025

Google Scholar

[20] H.C Shin and M. Liu: Chem. Mat., Vol. 16 (2004), pp.5460-464.

Google Scholar

[21] J. Niu, X. Liu, K. Xia, L. Xu, Y. Xu, X. Fang, and W. Lu: Int. J. Electrochem. Sci., Vol. 10 (2015), p.7331 – 7340.

Google Scholar

[22] P. Hsu, S. Seol, T. Lo, C. Liu, C. Wang, C. Lin, and G. Margaritondo: J. Electrochem. Soc., Vol. 155 (2008), p. D400.

Google Scholar