[1]
E. Díez-Peña, I. Quijada-Garrido, J.M. Barrales-Rienda, On the water swelling behaviour of poly (N-isopropylacrylamide) [P (N-iPAAm)], poly (methacrylic acid) [P (MAA)], their random copolymers and sequential interpenetrating polymer networks (IPNs), J. Polymer. 43(16) (2002) 4341-4348.
DOI: 10.1016/s0032-3861(02)00270-7
Google Scholar
[2]
N.A. Peppas, J. Klier, Controlled release by using poly (methacrylic acid-g-ethylene glycol) hydrogels, J. J. Controlled Release. 16(1-2) (1991) 203-214.
DOI: 10.1016/0168-3659(91)90044-e
Google Scholar
[3]
A.S. Hoffman, Hydrogels for biomedical applications, J. Adv. Drug Delivery Rev. 64 (2012) 18-23.
Google Scholar
[4]
O. Wichterle, D. Lim, Hydrophilic gels for biological use, J. Nature. 185(4706) (1960) 117.
DOI: 10.1038/185117a0
Google Scholar
[5]
H. Dai, Y. Huang, H. Huang, Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanocrystals, J. Cellulose. 25(8) (2018) 4623-4637.
DOI: 10.1007/s10570-018-1873-5
Google Scholar
[6]
C.H. Tsou, L. Zhao, C. Gao, et al. Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance, J. Nanotechnology. 31(38) (2020) 385703.
DOI: 10.1088/1361-6528/ab9786
Google Scholar
[7]
B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, et al. Hydrogels in regenerative medicine, J. Advanced materials. 21(32‐33) (2009) 3307-3329.
DOI: 10.1002/adma.200802106
Google Scholar
[8]
K. Qiao, Y. Zheng, S. Guo, et al. Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of nf-BC/PVA composites hydrogels, J. Compos. Sci. Technol. 118 (2015) 47-54.
DOI: 10.1016/j.compscitech.2015.08.004
Google Scholar
[9]
C.M. Hassan, N.A. Peppas, Cellular PVA hydrogels produced by freeze/thawing, J. J. Appl. Polym. Sci. 76(14) (2000) 2075-2079.
DOI: 10.1002/(sici)1097-4628(20000628)76:14<2075::aid-app11>3.0.co;2-v
Google Scholar
[10]
Y. Pan, D. Xiong, Friction properties of nano-hydroxyapatite reinforced poly (vinyl alcohol) gel composites as an articular cartilage, J. Wear. 266(7-8) (2009) 699-703.
DOI: 10.1016/j.wear.2008.08.012
Google Scholar
[11]
L. Zhang, Z. Wang, C. Xu, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels, J. J. Mater. Chem. 21(28) (2011) 10399-10406.
DOI: 10.1039/c0jm04043f
Google Scholar
[12]
Y. Shi, D. Xiong, J. Li, et al. In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels, J. RSC Adv. 7(2) (2017) 1045-1055.
DOI: 10.1039/c6ra24949c
Google Scholar
[13]
J. Guo, C.H. Tsou, M.R. De Guzman, et al. Preparation and characterization of bio-based green renewable composites from poly (lactic acid) reinforced with corn stover, J. Polym. Res. 28(6) (2021) 1-15.
DOI: 10.1007/s10965-021-02710-y
Google Scholar
[14]
C.H. Tsou, L. Zhao, C. Gao, et al. Guzman MRD (2020) Nanotechnol, J. Nanotechnology. 31(38) (2020) 385703.
Google Scholar