[1]
O.S. Mahdi, Materials Today: Proceedings Preparation cordierite and zirconia-doped cordierite composite & study bioactive properties, Mater. Today Proc. 42 (2021) 2006–2011. https://doi.org/10.1016/j.matpr.2020.12.249.
DOI: 10.1016/j.matpr.2020.12.249
Google Scholar
[2]
H. Li, C. Li, L. Wu, H. Wang, J. Li, M. Fu, C. Wang, In-situ synthesis and properties of porous cordierite ceramics with adjustable pore structure, Ceram. Int. 46 (2020) 14808–14815. https://doi.org/10.1016/j.ceramint.2020.03.005.
DOI: 10.1016/j.ceramint.2020.03.005
Google Scholar
[3]
F. Abidar, A. Soudani, M. Morghi, M. Chiban, Removal of by ( cordierite / ZrO 2 ) membrane modified by microparticles Removal of NO − 3 by ( cordierite / ZrO 2 ) membrane modified by microparticles Mohamed Zerbet , Fouad Sinan, Desalin. Water Treat. (2015) 1–10. https://doi.org/10.1080/19443994.2015.1095121.
DOI: 10.1080/19443994.2015.1095121
Google Scholar
[4]
H.J.M. Ridzwan, H. Ismail, M.A.A. Hamid, H. Mohamad, A comparative study on physico-mechanical and bioactivity properties of β-wollastonite derived from rice husk ash and calcined limestone drying through freeze-dried and incubator technique, J. Aust. Ceram. Soc. (2021). https://doi.org/10.1007/s41779-021-00580-7.
DOI: 10.1007/s41779-021-00580-7
Google Scholar
[5]
R. Shamsudin, F. 'Atiqah Abdul Azam, M.A. Abdul Hamid, H. Ismail, Bioactivity and cell compatibility of β-wollastonite derived from rice husk ash and limestone, Materials (Basel). 10 (2017). https://doi.org/10.3390/ma10101188.
DOI: 10.3390/ma10101188
Google Scholar
[6]
S. Kunjalukkal Padmanabhan, F. Gervaso, M. Carrozzo, F. Scalera, A. Sannino, A. Licciulli, Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering, Ceram. Int. 39 (2013) 619–627. https://doi.org/10.1016/j.ceramint.2012.06.073.
DOI: 10.1016/j.ceramint.2012.06.073
Google Scholar
[7]
H. Ismail, X.Y. Shun, R. Shamsudin, M.A. Abdul Hamid, Pengaruh Teknik Pengeringan yang Berbeza terhadap Ketumpatan, Keliangan dan Kebioaktifan β-Wolastonit daripada Batu Kapur Tempatan dan Jerami Padi, Sains Malaysiana. 48 (2019) 165–172. https://doi.org/10.17576/jsm-2019-4801-19.
DOI: 10.17576/jsm-2019-4801-19
Google Scholar
[8]
H. Ismail, R. Shamsudin, M.A. Abdul Hamid, A. Jalar, Synthesis and Characterization of Nano-Wollastonite from Rice Husk Ash and Limestone, Mater. Sci. Forum. 756 (2013) 43–47. https://doi.org/10.4028/www.scientific.net/MSF.756.43.
DOI: 10.4028/www.scientific.net/msf.756.43
Google Scholar
[9]
H. Ismail, R. Shamsudin, M.A. Abdul Hamid, Effect of autoclaving and sintering on the formation of β-wollastonite, Mater. Sci. Eng. C. 58 (2016) 1077–1081. https://doi.org/10.1016/j.msec.2015.09.030.
DOI: 10.1016/j.msec.2015.09.030
Google Scholar
[10]
S. V Dorozhkin, Amorphous calcium (ortho)phosphates., Acta Biomater. 6 (2010) 4457–75. https://doi.org/10.1016/j.actbio.2010.06.031.
DOI: 10.1016/j.actbio.2010.06.031
Google Scholar
[11]
A.K. Fakhruddin, N.A. Anjalani, Fabrication of bioactive glass-cordierite composite scaffold by gelcasting method Fabrication of Bioactive Glass-Cordierite Composite Scaffold by Gelcasting Method, 020018 (2020).
DOI: 10.1063/5.0015707
Google Scholar
[12]
A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The e ff ect of magnesium content on in vitro bioactivity , biological behavior and antibacterial activity of sol – gel derived 58S bioactive glass, Ceram. Int. 44 (2018) 9422–9432. https://doi.org/10.1016/j.ceramint.2018.02.159.
DOI: 10.1016/j.ceramint.2018.02.159
Google Scholar
[13]
B. Karakuzu-ikizler, Y. Basaran-elalmis, B. Sema, S. Yücel, Bioactive Materials Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica, 5 (2020) 66–73. https://doi.org/10.1016/j.bioactmat.2019.12.007.
DOI: 10.1016/j.bioactmat.2019.12.007
Google Scholar
[14]
S. Jebahi, H. Oudadesse, E. Wers, J. Elleuch, H. Elfekih, H. Keskes, X. Vuong, Effect of pH and Ionic Exchange on the Reactivity of Bioglass / Chitosan Composites Used as a Bone Graft Substitute, 7 (2013) 143–148.
Google Scholar
[15]
M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid, J. Non. Cryst. Solids. 356 (2010) 1470–1478.
DOI: 10.1016/j.jnoncrysol.2010.04.040
Google Scholar