[1]
F. Baino, S. Hamzehlou, and S. Kargozar, Bioactive glasses: Where are we and where are we going?, J. Funct. Biomater. 9 (2018).
DOI: 10.3390/jfb9010025
Google Scholar
[2]
V. Miguez-Pacheco, L. L. Hench, and A. R. Boccaccini, Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater. 13 (2015) 1–15, (2015).
DOI: 10.1016/j.actbio.2014.11.004
Google Scholar
[3]
W. H. Lu, K. D. Li, C. H. Lu, L. G. Teoh, W. H. Wu, and Y. C. Shen, Synthesis and characterization of mesoporous SiO2-CaO-P2O5 bioactive glass by sol-gel process, Mater. Trans. 54 (2013) 791–795.
DOI: 10.2320/matertrans.m2012417
Google Scholar
[4]
D. Bellucci, A. Sola, L. Lusvarghi, and V. Cannillo, Hydroxyapatite-tricalcium phosphate-bioactive glass ternary composites, Ceram. Int. 40 (2014) 3805–3808.
DOI: 10.1016/j.ceramint.2013.08.018
Google Scholar
[5]
Hua Guia, Cui Lia,Changwei Lina, Qian Zhanga,b, Zhiwei Luoa, Lei Hana, Jianlei Liua, Taoyong Liua, Anxian Lu, Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO, J. Eur. Ceram. Soc. 39 (2019) 1397–1410.
DOI: 10.1016/j.jeurceramsoc.2018.10.002
Google Scholar
[6]
P. Mengucci, G. Majni, A. De Benedittis, and G. Biagini, Study of the interface reactions between cells and a biocompatible ceramic, Biomaterials, 19 (1998) 1447–1450.
DOI: 10.1016/s0142-9612(98)00056-8
Google Scholar
[7]
A. Krajewski, A. Ravaglioli, M. Kirsch, G. Biagini, R. Solmi, M. Belmonte, C. Zucchini, M. G. Gandolfi, C. Castaldini, L. Rodriguez, R. Giardino, R. Mongiorgi, E Roncari, L. Orlandi, Ceramic support for cell cultures, J. Mater. Sci. Mater. Med. 7 (1996) 99–102.
DOI: 10.1007/bf00058720
Google Scholar
[8]
L. Orlandi, R. Solmi, A. Krajew,A. Bearzatto, G. Biaginig ,E. Ciccopiedil and A. Ravaglioli, Cell growth on cordierite : an approach to the identification of reliable supports for continuous-flow solid-bed reactors, Biomaterials, 18 (1997) 955–961.
DOI: 10.1016/s0142-9612(96)00201-3
Google Scholar
[9]
J. Ma, C. Z. Chen, D. G. Wang, and J. H. Hu, Synthesis, characterization and in vitro bioactivity of magnesium-doped sol–gel glass and glass-ceramics, Ceram. Int. 37 (2011) 1637–1644.
DOI: 10.1016/j.ceramint.2011.01.043
Google Scholar
[10]
S. K. Venkatraman, R. Choudhary, G. Krishnamurithy, H. R. B. Raghavendran, M. R. Murali, T. Kamarul, A. Suresh, J. Abraham, S. Swamiappan., Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics, Mater. Sci. Eng. C,118 (2020).
DOI: 10.1016/j.msec.2020.111466
Google Scholar
[11]
L. F. Hu and C. A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics, Ceram. Int., 36 (2010) 1697–1701.
DOI: 10.1016/j.ceramint.2010.03.009
Google Scholar
[12]
W. Leenakul, T. Tunkasiri, N. Tongsiri, K. Pengpat, and J. Ruangsuriya, Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica, Mater. Sci. Eng. C, 61 (2016) 695–704.
DOI: 10.1016/j.msec.2015.12.029
Google Scholar
[13]
O. P. Filho, G. P. Latorre, and L. L. Hench, Effect of crystallization on apatite-layer formation of bioactive glass 45S5, J. Biomed. Mater. Res. 30 (1996) 509–514.
DOI: 10.1002/(sici)1097-4636(199604)30:4<509::aid-jbm9>3.0.co;2-t
Google Scholar
[14]
E. Bou, M. F. Quereda, D. Lever, A. R. Boccaccini, and C. R. Cheeseman, Production of pulverised fuel ash tiles using conventional ceramic production processes, Adv. Appl. Ceram. 108 (2009) 44–49.
DOI: 10.1179/174367509x345006
Google Scholar
[15]
C. Molinari, C. Zanelli, G. Guarini, and M. Dondi, Bloating mechanism in lightweight aggregates: Effect of processing variables and properties of the vitreous phase, Constr. Build. Mater. 261 (2020).
DOI: 10.1016/j.conbuildmat.2020.119980
Google Scholar