[1]
J. Kruzelák, R. Dosoudil, R. SÝKora, I. Hudec, Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite, Bull. Mater. Sci. 40 (2017) 223–231.
DOI: 10.1007/s12034-016-1347-z
Google Scholar
[2]
K. Makuuchi, S. Cheng, Radiation Processing of Polymer Materials and its Industrial Applications, First Edit. New Jersey: John Wiley & Sons, Inc., (2012).
Google Scholar
[3]
C. K. Chai, C. T. Ratnam, L. C. Abdullah, H. M. Yusoff, Tensile properties and thermal stability of gamma irradiated epoxidized natural rubber latex with the presence of sensitizer, J. Polym. Mater. 33 (2016) 223–232.
Google Scholar
[4]
S. Javad, Y. Huang, N. Ren, A. Mohaddespour, The comparison of EPDM / clay nanocomposites and conventional composites in exposure of gamma irradiation, Compos. Sci. Technol. 69 (2009) 997–1003.
DOI: 10.1016/j.compscitech.2009.01.006
Google Scholar
[5]
K. S. Bandzierz, L. A. E. M. Reuvekamp, G. Przybytniak, W. K. Dierkes, A. Blume, D. M. Bieliński, Effect of electron beam irradiation on structure and properties of styrene-butadiene rubber, Radiat. Phys. Chem. 149 (2018) 14–25.
DOI: 10.1016/j.radphyschem.2017.12.011
Google Scholar
[6]
K. F. El-Nemr, Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates, Mater. Des. 32 (2011) 3361–3369.
DOI: 10.1016/j.matdes.2011.02.010
Google Scholar
[7]
R. F. Khankishiyeva, Comparative study of the effect of gamma-radiation on the structural and thermophysical properties of nitrile-butadiene rubber filled with different nanometal oxides, Probl. At. Sci. Technol. 126 (2020) 39–46.
DOI: 10.46813/2020-126-039
Google Scholar
[8]
R. Deepalaxmi, V. Rajini, Gamma and electron beam irradiation effects on SiR-EPDM blends, J. Radiat. Res. Appl. Sci. 7 (2014) 363–370.
DOI: 10.1016/j.jrras.2014.05.005
Google Scholar
[9]
M. Madani, Effect of γ-irradiation on the properties of rubber-based conductive blend composites, Polym. Polym. Compos. 12 (2004) 525–534.
DOI: 10.1177/096739110401200608
Google Scholar
[10]
K. A. Montoya-Villegas, Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization, Eur. Polym. J. 134 (2020) 109817.
DOI: 10.1016/j.eurpolymj.2020.109817
Google Scholar
[11]
S. Ibrahim, K. Badri, C. T. Ratnam, and N. H. M. Ali, Enhancing mechanical properties of prevulcanized natural rubber latex via hybrid radiation and peroxidation vulcanizations at various irradiation doses, Radiat. Eff. Defects Solids 173 (2018) 427–434.
DOI: 10.1080/10420150.2018.1462366
Google Scholar
[12]
E. Kalkornsurapranee, Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers, Radiat. Phys. Chem. 179 (2021) 109261.
DOI: 10.1016/j.radphyschem.2020.109261
Google Scholar
[13]
E. Planes, L. Chazeau, G. Vigier, J. Fournier, Evolution of EPDM networks aged by gamma irradiation - Consequences on the mechanical properties, Polymer (Guildf) 50 (2009) 4028–4038.
DOI: 10.1016/j.polymer.2009.06.036
Google Scholar
[14]
S. Guggenheim, Phyllosilicates used as nanotube substrates in engineered materials: structures, chemistries and textures, Nat. Miner. Nanotub. ( 2015) 3–48.
DOI: 10.1201/b18107-3
Google Scholar
[15]
A. Zotti, A. Borriello, M. Ricciardi, V. Antonucci, M. Giordano, M. Zarrelli, Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy, Compos. Part B Eng. 73 (2015) 139–148.
DOI: 10.1016/j.compositesb.2014.12.019
Google Scholar
[16]
G. Tang, The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites, J. Therm. Anal. Calorim. 130 (2017) 763–772.
DOI: 10.1007/s10973-017-6425-y
Google Scholar