Influence of Gamma-Irradiation on Swelling Percentage, Flammability Resistance and Morphological Analysis of EPDM/Sepiolite Composites

Article Preview

Abstract:

Gamma irradiation is a particularly effective method for inducing crosslinking, which leads to improved composite characteristics. The effects of gamma irradiation on swelling percentage, flammability and morphological analysis were investigated. Ethylene Propylene Diene Monomer (EPDM) rubber composites were prepared with various amounts from 10-60 phr (part per hundred part of rubber) of the sepiolite particles using a two-roll mill machine. The composites were subjected to 50 kGy of gamma irradiation and compared with unirradiated composites. The results demonstrate a reduced in swelling percentage at all sepiolite loadings. The crosslinks of rubber chains into sepiolite/EPDM composites generated by gamma rays resulted in improvements in the swelling resistance. The irradiation composites, however showed lower flammability resistance to the non-irradiated composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kruzelák, R. Dosoudil, R. SÝKora, I. Hudec, Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite, Bull. Mater. Sci. 40 (2017) 223–231.

DOI: 10.1007/s12034-016-1347-z

Google Scholar

[2] K. Makuuchi, S. Cheng, Radiation Processing of Polymer Materials and its Industrial Applications, First Edit. New Jersey: John Wiley & Sons, Inc., (2012).

Google Scholar

[3] C. K. Chai, C. T. Ratnam, L. C. Abdullah, H. M. Yusoff, Tensile properties and thermal stability of gamma irradiated epoxidized natural rubber latex with the presence of sensitizer, J. Polym. Mater. 33 (2016) 223–232.

Google Scholar

[4] S. Javad, Y. Huang, N. Ren, A. Mohaddespour, The comparison of EPDM / clay nanocomposites and conventional composites in exposure of gamma irradiation, Compos. Sci. Technol. 69 (2009) 997–1003.

DOI: 10.1016/j.compscitech.2009.01.006

Google Scholar

[5] K. S. Bandzierz, L. A. E. M. Reuvekamp, G. Przybytniak, W. K. Dierkes, A. Blume, D. M. Bieliński, Effect of electron beam irradiation on structure and properties of styrene-butadiene rubber, Radiat. Phys. Chem. 149 (2018) 14–25.

DOI: 10.1016/j.radphyschem.2017.12.011

Google Scholar

[6] K. F. El-Nemr, Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates, Mater. Des. 32 (2011) 3361–3369.

DOI: 10.1016/j.matdes.2011.02.010

Google Scholar

[7] R. F. Khankishiyeva, Comparative study of the effect of gamma-radiation on the structural and thermophysical properties of nitrile-butadiene rubber filled with different nanometal oxides, Probl. At. Sci. Technol. 126 (2020) 39–46.

DOI: 10.46813/2020-126-039

Google Scholar

[8] R. Deepalaxmi, V. Rajini, Gamma and electron beam irradiation effects on SiR-EPDM blends, J. Radiat. Res. Appl. Sci. 7 (2014) 363–370.

DOI: 10.1016/j.jrras.2014.05.005

Google Scholar

[9] M. Madani, Effect of γ-irradiation on the properties of rubber-based conductive blend composites, Polym. Polym. Compos. 12 (2004) 525–534.

DOI: 10.1177/096739110401200608

Google Scholar

[10] K. A. Montoya-Villegas, Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization, Eur. Polym. J. 134 (2020) 109817.

DOI: 10.1016/j.eurpolymj.2020.109817

Google Scholar

[11] S. Ibrahim, K. Badri, C. T. Ratnam, and N. H. M. Ali, Enhancing mechanical properties of prevulcanized natural rubber latex via hybrid radiation and peroxidation vulcanizations at various irradiation doses, Radiat. Eff. Defects Solids 173 (2018) 427–434.

DOI: 10.1080/10420150.2018.1462366

Google Scholar

[12] E. Kalkornsurapranee, Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers, Radiat. Phys. Chem. 179 (2021) 109261.

DOI: 10.1016/j.radphyschem.2020.109261

Google Scholar

[13] E. Planes, L. Chazeau, G. Vigier, J. Fournier, Evolution of EPDM networks aged by gamma irradiation - Consequences on the mechanical properties, Polymer (Guildf) 50 (2009) 4028–4038.

DOI: 10.1016/j.polymer.2009.06.036

Google Scholar

[14] S. Guggenheim, Phyllosilicates used as nanotube substrates in engineered materials: structures, chemistries and textures, Nat. Miner. Nanotub. ( 2015) 3–48.

DOI: 10.1201/b18107-3

Google Scholar

[15] A. Zotti, A. Borriello, M. Ricciardi, V. Antonucci, M. Giordano, M. Zarrelli, Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy, Compos. Part B Eng. 73 (2015) 139–148.

DOI: 10.1016/j.compositesb.2014.12.019

Google Scholar

[16] G. Tang, The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites, J. Therm. Anal. Calorim. 130 (2017) 763–772.

DOI: 10.1007/s10973-017-6425-y

Google Scholar