Effect of Chemical Treatment on Mechanical and Morphological Properties of Sugarcane Bagasse Reinforced Unsaturated Polyester Composite

Article Preview

Abstract:

The purpose of this research is to study the mechanical and morphology of sugarcane bagasse (SGB) reinforced unsaturated polyester resin (UPR) composites by utilizing a different percentage of fibre contents and different chemical treatments on fibres. Sugarcane bagasse reinforced unsaturated polyester resin composites have been prepared using the compression molding technique. To enhance better adhesion between fibre and matrix, the SGB was chemically treated with alkaline (NaOH) solution and silane solution for 2 hours. The characterization of mechanical properties such as tensile and flexural strength, and tensile and flexural modulus of SGB-UPR composites were studied and compared. The incorporation of the alkaline + silane treatment of SGB resulted in better tensile and flexural properties of composites than untreated or alkaline-only treated SGB composites. Overall, it can be seen that the 5 % of fibre treated with NaOH + silane treatment showed the best results for tensile and flexural properties. Surfaces of cracked composites were observed using SEM and treated SGB showed better interfacial adhesion with matrix rather than the untreated SGB. Chemical treatment plays an important in enhancing the interfacial adhesion of fibre and matrix in composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-32

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Verma, P.C. Gope, M.K. Maheshwari, R. K. Sharma, Bagasse fiber composites-A review, J. Mater. Environ. Sci. 3(6) (2012) 1079-1092.

Google Scholar

[2] M. Bhowmick, S. Mukhopadhyay, R. Alagirusamy, Mechanical properties of natural fibre- reinforced composites, Textile Progress, 44(2) (2012) 85-140.

DOI: 10.1080/00405167.2012.676800

Google Scholar

[3] Y. Asikin, M. Takahashi, N. Hirose, D. X. Hou, K. Takara, K. Wada, Wax, policosanol, and long‐chain aldehydes of different sugarcane (Saccharum officinarum L.) cultivars, European Journal of Lipid Science and Technology, 114(5) (2012) 583-591.

DOI: 10.1002/ejlt.201100300

Google Scholar

[4] K. Hofsetz, M. A. Silva, Brazilian sugarcane bagasse: energy and non-energy consumption, Biomass and Bioenergy, 46 (2012) 564-573.

DOI: 10.1016/j.biombioe.2012.06.038

Google Scholar

[5] M. K. Hossain, M. R. Karim, M. R. Chowdhury, M. A. Imam, M. Hosur, S. Jeelani, R. Farag, Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle, Industrial Crops and Products, 58 (2014) 78-90.

DOI: 10.1016/j.indcrop.2014.04.002

Google Scholar

[6] Y. R. Loh, D. Sujan, M. E Rahman, C.A. Das, Sugarcane bagasse—The future composite material: A literature review, Resources, Conservation and Recycling, 75 (2013) 14-22.

DOI: 10.1016/j.resconrec.2013.03.002

Google Scholar

[7] B. K. Goriparthi, K. N. S. Suman, N. M. Rao, Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing, 43(10) (2012) 1800-1808.

DOI: 10.1016/j.compositesa.2012.05.007

Google Scholar

[8] O. M. L. Asumani, R. G. Reid, R. Paskaramoorthy, The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9) (2012) 1431-1440.

DOI: 10.1016/j.compositesa.2012.04.007

Google Scholar

[9] M. Y. Hashim, M. N. Roslan, A. M. Amin, A. M. A. Zaidi, S. Ariffin, Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: a brief review. In Proceedings of World Academy of Science, Engineering and Technology (No. 68). World Academy of Science, Engineering and Technology.

Google Scholar

[10] F. Zhou, G. Cheng, B. Jiang, Effect of silane treatment on microstructure of sisal fibers, Applied Surface Science, 292 (2014) 806-812.

DOI: 10.1016/j.apsusc.2013.12.054

Google Scholar

[11] D. G. Devadiga , K. S. Bhat, G.T Mahesha, Sugarcane bagasse fiber reinforced composites: Recent advances and applications, Cogent Engineering, 7(1) (2020) 1823159.

DOI: 10.1080/23311916.2020.1823159

Google Scholar

[12] M. N. Norizan, K .Abdan, M. S. Salit, R. Mohamed, Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. J. Phys. Sci., 28(3) (2017) 115–136.

DOI: 10.21315/jps2017.28.3.8

Google Scholar

[13] M.S. Zakaria, L. Musa, R.M. Nordin, K.A Halim, Sugarcane Bagasse Reinforced Polyester Composites: Effects of Fiber Surface Treatment And Fiber Loading on The Tensile And Flexural Properties, InIOP Conference Series: Materials Science and Engineering, 957(1) (2020) 012032.

DOI: 10.1088/1757-899x/957/1/012032

Google Scholar

[14] V. Vilay, M. Mariatti, R.M. Taib, M. Todo, Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites, Composites Science and Technology, 68(3-4) (2008) 631- 638.

DOI: 10.1016/j.compscitech.2007.10.005

Google Scholar

[15] E. T. N. Bisanda, M. P. Ansell, The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites, Composites Science and Technology, 41(2), (1991)165-178.

DOI: 10.1016/0266-3538(91)90026-l

Google Scholar

[16] O. Faruk, A. K. Bledzki, H. P. Fink, M. Sain, Progress report on natural fiber reinforced composites, Macromolecular Materials and Engineering, 299(1) (2014) 9-26.

DOI: 10.1002/mame.201300008

Google Scholar

[17] M. Bhowmick, S. Mukhopadhyay, R. Alagirusamy, Mechanical properties of natural fibre- reinforced composites, Textile Progress, 44(2) (2012) 85-14.

DOI: 10.1080/00405167.2012.676800

Google Scholar