Characterization of Sodium Alginate Membrane Plasticized by Polyols and Polyamine for DMFC Applications

Article Preview

Abstract:

This study reports the effect of plasticizers namely isopropanol, polyethylene glycol, maltitol and spermidine on the properties of the sodium alginate composite membrane. The concentration of each potential plasticizer was set at minimum to execute performance. Properties of sodium alginate were studied through characterization studies - Field Emission Scanning Electron Microscope (FESEM) to observe on the morphology structure. The membrane performance is also seen through water uptake and swelling ratio tests. Isopropanol produced better plasticizer with the lowest water uptake of 575.53% and less hydrophilic compared to spermidine (1268.46%), polyethylene glycol (1014.30%) and maltitol (595.82%). Further study may require copolymerization to support polyol for ensuring structure firmness. This study proven the plasticizers could enhance membrane’s flexibility in DMFC and becoming a promising choice of additives for better alginate-based membrane establishment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-25

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Shaari and S. K. Kamarudin: Polym. Test. Vol. 81 (2020), p.106183.

Google Scholar

[2] F. Galiano, K. Briceño, T. Marino, A. Molino, K. V. Christensen, and A. Figoli: J. Memb. Sci., Vol. 564, no. July (2018), p.562–586.

DOI: 10.1016/j.memsci.2018.07.059

Google Scholar

[3] A. Grossi, S. De Laia, E. De Souza, C. Júnior, and H. De Souza Costa, in: A study of sodium alginate and calcium chloride interaction through films for intervertebral disc regeneration uses, Brasil (2014), in press.

Google Scholar

[4] N. Shaari and S. K. Kamarudin: Int. J. Hydrogen Energy, no. xxxx (2018).

Google Scholar

[5] M. Matet, M. C. Heuzey, A. Ajji, and P. Sarazin: Carbohydr. Polym., Vol. 117 (2015), p.177–184.

Google Scholar

[6] N. Reddy, R. Reddy, and Q. Jiang: Trends Biotechnol. Vol. 33, no. 6 (2015), p.362–369.

Google Scholar

[7] A. S. Giz et al.: Int. J. Biol. Macromol. Vol. 148 (2020), p.49–55.

Google Scholar

[8] M. G. A. Vieira, M. A. Da Silva, L. O. Dos Santos, and M. M. Beppu: Eur. Polym. J., Vol. 47, no. 3 (2011), p.254–263.

Google Scholar

[9] H. Kaygusuz, E. Torlak, G. Akın-Evingür, İ. Özen, R. von Klitzing, and F. B. Erim: Int. J. Biol. Macromol. Vol. 105 (2017), p.1161–1165.

DOI: 10.1016/j.ijbiomac.2017.07.144

Google Scholar

[10] M. Gierszewska and J. Ostrowska-Czubenko: Carbohydr. Polym. Vol. 153 (2016), p.501–511.

Google Scholar

[11] B. R. Riegger, R. Kowalski, L. Hilfert, G. E. M. Tovar, and M. Bach: Carbohydr. Polym. Vol. (2018), p.172–181.

Google Scholar

[12] J. Rajesh Banu et al. : Bioresour. Technol., Vol. 290 (2019), p.121790.

Google Scholar

[13] M. Alboofetileh, M. Rezaei, H. Hosseini, and M. Abdollahi: J. Food Eng. Vol. 117, no. 1 (2013), p.26–33.

Google Scholar

[14] E. Rynkowska, K. Fatyeyeva, J. Kujawa, K. Dzieszkowski, A. Wolan, and W. Kujawski: Polymers (Basel)., Vol. 10, no. 1 (2018).

DOI: 10.3390/polym10010086

Google Scholar

[15] J. Albo, J. Wang, and T. Tsuru: J. Memb. Sci., Vol. 453 (2014), p.384–393.

Google Scholar

[16] T. Bourtoom: J. Sci. Technol., Vol. 30, no. SUPPL. 1 (2008), p.149–155.

Google Scholar

[17] X. Ma, C. Qiao, X. Wang, J. Yao, and J. Xu: Int. J. Biol. Macromol. Vol. 135 (2019), p.240–245.

Google Scholar

[18] M. Sabbah, P. Di Pierro, M. Cammarota, E. Dell'Olmo, A. Arciello, and R. Porta: Food Hydrocoll. Vol. 87, no. May (2018), p.245–252.

Google Scholar

[19] R. A. Talja, H. Hele, H. Roos, and K. Jouppila: Vol. 67 (2007), p.288–295.

Google Scholar

[20] H. Y. Chang and C. W. Lin: J. Memb. Sci., Vol. 218, no. 1–2 (2003), p.295–306.

Google Scholar

[21] A. S. Aricò, V. Baglio, A. Di Blasi, E. Modica, P. L. Antonucci, and V. Antonucci: Vol. 128 (2004), p.113–118.

DOI: 10.1016/j.jpowsour.2003.09.063

Google Scholar

[22] L. Atmaja et al.: Malaysian J. Fundam. Appl. Sci. Vol. 15, no. 4 (2019), p.492–497.

Google Scholar

[23] X. Liao, L. Ren, D. Chen, X. Liu, and H. Zhang: J. Power Sources, Vol. 286 (2015), p.258–263.

Google Scholar

[24] D. Qiu, L. Peng, X. Lai, M. Ni, and W. Lehnert: Renew. Sustain. Energy Rev. Vol. 113, no. July (2019), p.1–32.

Google Scholar

[25] Y.-H. Lai, C. K. Mittelsteadt, C. S. Gittleman, and D. A. Dillard: Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes, in 3rd International Conference on Fuel Cell Science, Engineering and Technology, May 2005, p.161–167, in press.

DOI: 10.1115/fuelcell2005-74120

Google Scholar

[26] N. Shaari and S. K. Kamarudin: Int. J. Energy Res. Vol. 43, no. 7 (2019), p.2756–2794.

Google Scholar