Morphological and Structural Properties of Sn-Bi Lead-Free Solder in 6 M Potassium Hydroxide

Article Preview

Abstract:

Sn-based lead-free solder alloys have been explored extensively as an alternative to the conventional Sn–Pb solder alloys. While the miniaturization of electronic devices and the growth of appliance area, the corrosion resistance of solder alloys play a crucial element in the reliability of electronic devices in a prolonged period of service. This paper determines the corrosion effect of Sn-Bi solder lead-free solder, particularly immersed in alkaline solution which is potassium hydroxide. Morphological and elemental analyses reveal the formation of oxides on the surface after immersion after using a scanning electron microscope, dispersive energy X-ray and X-ray diffraction. The result of morphology reveals that the Sn matrix in plateau indicated dark contrast while Bi-rich in the lamellar eutectic structure indicated in light contrast appearance. In addition, phase and elemental analyses revealed the formation of mixed corrosion products of SnO, SnO2 and Bi2O3 on the surface after testing. It is hoped that this finding will provide some helpful evidence in clarifying the corrosion progress of lead-free solder alloys. Furthermore, the remaining corrosion potential and current of Sn-Bi in 6 M potassium hydroxide solutions in this research are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-466

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Y. Wong, R. A. Shamsudin, M. F. Mohd Nazeri, and M. N. Masri, The Preliminary Study of the Addition Zinc in Tin-Copper Lead Free Solder, Mater. Sci. Forum. 1010 (2020) 104-108.

DOI: 10.4028/www.scientific.net/msf.1010.104

Google Scholar

[2] M. N. Masri, M. K. Samsudin, M. A. Sulaiman, M. Mohamed, M. F. M. Amin, M. H. M. Amini, M. K. A. A. Razak, N. H. Abdullah, M. B. A. Bakar, M. I. Ahmad, Microscopic Study on the Corrosion of Underground Pipeline, Key Eng. Mater. 694 (2016) 172-176.

DOI: 10.4028/www.scientific.net/kem.694.172

Google Scholar

[3] H. Kang, S. H. Rajendran, and J. P. Jung, Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics, Metals.11, 2 (2021) 364.

DOI: 10.3390/met11020364

Google Scholar

[4] Y.Z. Peng C.J. Li, J.J. Yang, J.T. Zhang, J.B. Peng, G.J. Zhou, C.J. Pu, J.H. Yi, Effects of Bismuth on the Microstructure, Properties, and Interfacial Reaction Layers of Sn-9Zn-xBi Solders, Metals. 11, 4 (2021) 538.

DOI: 10.3390/met11040538

Google Scholar

[5] M. F. M. Nazeri, M. N. Masri, and A. A. Mohamad, Post-Corrosion Mechanical Analysis of Sn-Zn Alloys: A Short Review, IOP Conf. Ser.: Mater. Sci. Eng.701, 1 (2019) 012049.

DOI: 10.1088/1757-899x/701/1/012049

Google Scholar

[6] M. Muhamad, M. Masri, M. Nazeri, and A. Mohamad, The Effect of Bismuth Addition on Sn-Ag-Cu Lead-Free Solder Properties: A Short Review, IOP Conf. Ser.: Earth Environ. Sci. 596, 1 (2020) 012007.

DOI: 10.1088/1755-1315/596/1/012007

Google Scholar

[7] F. S. M. Tarmizi, M. N. Masri, M. F. M. Nazeri, and A. A. Mohamad, Effect Additions Zn on Sn-0.7 Cu Lead-Free Solder: A Short Brief, IOP Conf. Ser.: Earth Environ. Sci. 596, 1 (2020) 012038.

DOI: 10.1088/1755-1315/596/1/012038

Google Scholar

[8] Z.-L. Wang, M. Wang, L.X. Li, and Y.P. Bao, Permeation behavior of low-melting-point Sn–Bi alloy in the fiber channel of pine wood, Materials & Design. 196 (2020) 109068.

DOI: 10.1016/j.matdes.2020.109068

Google Scholar

[9] Y. Hirata, C. H. Yang, S. K. Lin, and H. Nishikawa, Improvements in mechanical properties of Sn-Bi alloys with addition of Zn and In, Mater. Sci. Eng.: A. (2021) 141131.

DOI: 10.1016/j.msea.2021.141131

Google Scholar

[10] C. Luo, X. Qiu, Y. Ruan, Y. Lu, and F. Xing, Effect of Bi addition on the corrosion resistance and mechanical properties of sintered NdFeB permanent magnet/steel soldered joints, Mater. Sci. Eng.: A, 792 (2020) 139832.

DOI: 10.1016/j.msea.2020.139832

Google Scholar

[11] P. Ranjan, D. H. Nguyen, K. Tanaka, H. Suematsu, R. Jayaganthan, and R. Sarathi, Synthesis, characterisation and formation mechanism of Sn-0.75 Cu solder nanoparticles by pulsed wire discharge, Appl. Nanosci. 9, 3 (2019) 341-352.

DOI: 10.1007/s13204-018-0910-x

Google Scholar

[12] M. Yusoff, M, Mohamed, M. B. A. Bakar, M. N. Masri, N. Z. Noriman, M. U. S. U. Omar, Copper alloy reinforced by graphene by powder metallurgy technique, AIP Conf. Proc. 2213, 1 (2020) 020264.

DOI: 10.1063/5.0000413

Google Scholar

[13] S. Li, X. Wang, Z. Liu, Y. Jiu, S. Zhang, J. Geng, X. Chen, S. Wu, P. Hu, W. Long, Corrosion behavior of Sn-based lead-free solder alloys: a review, J. Mater. Sci. Mater. 31 (2020) 9076-9090.

DOI: 10.1007/s10854-020-03540-2

Google Scholar

[14] S. Cai, X. Luo, J. Peng, Z. Yu, H. Zhou, N. Liu, X. Wang, Deformation mechanism of various Sn-x Bi alloys under tensile tests, Advanced Composites and Hybrid Materials. (2021) 1-13.

DOI: 10.1007/s42114-021-00231-2

Google Scholar

[15] M. Li, Y. Tang, Z. Li, M. Zhu, and W. Wang, Microstructure and mechanical properties of Sn–58Bi eutectic alloy with Cu/P addition, Mater. Res. Express. 7, 11 (2020) 116502.

DOI: 10.1088/2053-1591/abc4f8

Google Scholar

[16] M. Mohamad, R. Wannahari, R. Mohammad, N.F. Shoparwe, A.S.M. Nawi, W.L. Kwan, J.W. Lim, Adsorption of malachite   green   dye using spent coffee ground biochar: optimisation using response surface methodology, J. Teknol. 83:1 (2021) 27-36.

DOI: 10.11113/jurnalteknologi.v83.14904

Google Scholar

[17] R. Taufik, M. Mohamad, R. Wannahari, N.F. Shoparwe, W.H.W. Osman, P.T. Teo and M.N. Masri, Spent coffee ground as low-cost adsorbent for congo red dye removal from aqueous solution, IOP Conf. Ser.: Earth Environ. Sci. 765 (2021) 012089.

DOI: 10.1088/1755-1315/765/1/012089

Google Scholar