Microwave-Assisted Acid Digestion of Malaysian Monazite for Determination of REEs Using ICP-MS

Article Preview

Abstract:

The objective of this study to investigate microwave-assisted digestion as a rapid sample preparation method for the determination of REEs in Malaysian monazite using Inductively Coupled plasma-mass spectrometry (ICP-MS). Finely powdered monazite (D90 < 75μm) was the raw material for the digestion and fusion procedures. In the Li-borate fusion method, the digestion was achieved by lithium tetraborate: metaborate flux (Li2B4O7: LiBO2) flux fusion followed by acid attack, using nitric acid (HNO3). The second method, the microwave-assisted digestion method, involved digestion of the monazite in a mixture of H2SO4, HNO3, and HF, followed by neutralization of the insoluble fluorides and complexation of residual HF. The concentrations of REEs, measured by both the methods, were in agreement with each other, except for the values of P and Si, which were slightly apart. Both the sample dissolution methods offer feasible means of quantifying REEs in the monazite sample, but only a combined microwave digestion-fusion technique yields complete quantitative data for monazite-type samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

481-486

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zawisza, K. Pytlakowska, B. Feist, M. Polowniak, A. Kita and R. Sitko, J. Anal. At. Spectrom. 26 (2011), 2373-2390.

DOI: 10.1039/c1ja10140d

Google Scholar

[2] T.P. Rao and V.M. Biju, Crit. Rev. Anal. Chem. 30 (2000), 179-220 (2000). https://doi.org/10.1080/10408340091164234.

Google Scholar

[3] A. Gorbatenko and E. Revina, Inorg. Mater. 51(2015), 1375-1388.

Google Scholar

[4] V. Balaram, Bull. Mater. Sci. 28(2005), 345-348.

Google Scholar

[5] C. Agatemor and D. Beauchemin, Anal. Chim. Acta. 706(2011), 66-83.

Google Scholar

[6] S. Mitra, Sample preparation techniques in analytical chemistry, John Wiley & Sons, (2004).

Google Scholar

[7] V. Balaram and T.G. Rao, At. Spectrosc. 24(2003), 206-212.

Google Scholar

[8] M.S. Navarro, S. Andrade, H. Ulbrich, C.B. Gomes and V.A. Girardi, Geostand. Geoanalytical Res. 32(2008), 167-180.

Google Scholar

[9] MARS 6 Method Note Compendium: CEM; 2019. Information on www.cem.com/media/contenttype/media/literature/MetNote_MARS6_Compendium.pdf.

Google Scholar

[10] Z. Alfassi and C.M. Wai, Preconcentration techniques for trace elements, CRC press, (1991).

Google Scholar

[11] U. FDA, EPA 402-B-04-001C, NTIS PB2004-105421, Alexandria, VA, USA, (2004).

Google Scholar

[12] S. Udayakumar, A.F.M. Noor, S.A.R.S.A. Hamid, T.A.R. Putra and C.G. Anderson, Mining Metall. Explor. (2000), 1-17.

Google Scholar

[13] H. Homma, Rigaku Journal, 34(2018), 5.

Google Scholar

[14] M. Alvarez, X-Ray Spectrom. 19(1990), 203-206.

Google Scholar

[15] R. Schramm, Phys. Sci. Rev. 1 (2016).

Google Scholar

[16] B. Qian, X. Liang, S. Yang, S. He and L. Gao, J. Mol. Struct., 1027(2012), 31-35.

Google Scholar

[17] D. Zachmann, Anal. Chem. 60(1988), 420-427.

Google Scholar

[18] J. Rajendran, G. Balasubramanian and P. Thampi, Curr. Sci. (2008), 1296-1302.

Google Scholar

[19] L. Whitty-Léveillé, K. Turgeon, C. Bazin and D. Larivière, Anal. Chim. Acta., 961(2017), 33-41.

Google Scholar

[20] M.M. Todand, I. Jarvis and K.E. Jarvis, Chem. Geol. 124 (1995), 21-36.

Google Scholar

[21] M. Totland, I. Jarvis and K.E. Jarvis, Chem. Geol. 95(1992), 35-62.

Google Scholar

[22] R.S. Amais, J.A. Nóbrega and G.L. Donati, J. Anal. At. Spectrom., 29 (2014), 1258-1264.

Google Scholar

[23] P.-K. Chen, M.R. Rosana, G.B. Dudley and A. Stiegman, J. Org. Chem, 79 (2014), 7425-7436.

Google Scholar

[24] C.Corporation,Microwave Heating - Increasing Reaction Rate, Available on https://cem.com/in/microwave-heating-increasing-reaction-rate.

Google Scholar