[1]
Y. Basiron, & M.A. Simeh, Vision 2020 – The palm oil phenomenon. Oil Palm Industry Econ. J., 5 (2005) 1–10.
Google Scholar
[2]
K. Wi, H. Lee, S. Lim, H. Song, M.W. Hussin, & M. Ismail, Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Constr. Build. Mater., 183 (2018) 139–149.
DOI: 10.1016/j.conbuildmat.2018.06.156
Google Scholar
[3]
M.N.M. Sidek, N.H. Hashim, S.R. Rosseli, M.R.M. Nor, S. Ismail, H.M. Saman, M.F. Arshad, A. Alisibramulisi, & F. Zainudin, Utilisation of palm oil fuel ash (POFA) as cement replacement by using powder and liquidation technique. AIP Conference Proceedings, 2020 (2018) 020069.
DOI: 10.1063/1.5062695
Google Scholar
[4]
L. Esposito, A. Tucci, & D. Naldi, The reliability of polished porcelain stoneware tiles. J. Euro. Ceram. Soc., 25 (2005) 1487–1498.
DOI: 10.1016/j.jeurceramsoc.2004.05.030
Google Scholar
[5]
P. Lima, A. Zocca, W. Acchar, & J. Günster, 3D printing of porcelain by layerwise slurry deposition. J. Euro. Ceram. Soc., 38 (2018) 3395–3400.
DOI: 10.1016/j.jeurceramsoc.2018.03.014
Google Scholar
[6]
A. Zocca, P. Colombo, C.M. Gomes, & J. Gunster, Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Amer. Ceram. Soc., 98 (2015) 1983–(2001).
DOI: 10.1111/jace.13700
Google Scholar
[7]
N. Ediz, & A. Yurdakul, Characterization of porcelain tile bodies with colemanite waste added as a new sintering agent. J. Ceram. Proc. Res., 10 (2009) 414–422.
Google Scholar
[8]
K. Dana, J. Dey, & S.K. Das, Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditional porcelain tiles. Ceram. Int., 31 (2005) 147–152.
DOI: 10.1016/j.ceramint.2004.04.008
Google Scholar
[9]
L. Esposito, A. Salem, A. Tucci, A. Gualtieri, & S.H. Jazayeri, The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceram. Int., 31 (2005) 233–240.
DOI: 10.1016/j.ceramint.2004.05.006
Google Scholar
[10]
H.R. Fernandes, & J.M.F. Ferreira, Recycling of chromium-rich leather ashes in porcelain tiles production. J. Euro. Ceram. Soc., 27 (2007) 4657–4663.
DOI: 10.1016/j.jeurceramsoc.2007.03.037
Google Scholar
[11]
S. Ferrari, & A.F. Gualtieri, The use of illitic clays in the production of stoneware tile ceramics. Appl. Clay Sci., 32 (2006) 73–81.
DOI: 10.1016/j.clay.2005.10.001
Google Scholar
[12]
R.dé, Gennaro, P. Cappelletti, G. Cerri, M.dé, Gennaro, M. Dondi, G. Guarini, A. Langella, & D. Naimo, Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. J. Euro. Ceram. Soc., 23 (2003) 2237–2245.
DOI: 10.1016/s0955-2219(03)00086-4
Google Scholar
[13]
A.P. Luz, & S. Ribeiro, Use of glass waste as a raw material in porcelain stoneware tile mixtures. Ceram. Int., 33 (2007) 761–765.
DOI: 10.1016/j.ceramint.2006.01.001
Google Scholar
[14]
M. Raimondo, C. Zanelli, F. Matteucci, G. Guarini, M. Dondi, & J.A. Labrincha, Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Ceram. Int., 33 (2007) 615–623.
DOI: 10.1016/j.ceramint.2005.11.012
Google Scholar
[15]
E. Rambaldi, W.M. Carty, A. Tucci, & L. Esposito, Using waste glass as a partial flux substitution and pyroplastic deformation of a porcelain stoneware tile body. Ceram. Int., 33 (2007) 727–733.
DOI: 10.1016/j.ceramint.2005.12.010
Google Scholar
[16]
A. Tucci, L. Esposito, E. Rastelli, C. Palmonari, & E. Rambaldi, Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J. Euro. Ceram. Soc., 24 (2004) 83–92.
DOI: 10.1016/s0955-2219(03)00121-3
Google Scholar
[17]
S.I.D. Garba, M.Z. Noh, A.R. Siti Noraiza, & A.K. Nur Azureen, Physico-mechanical properties of porcelain by substitution of quartz with POFA treated with 2M HCl acid. Int. J. Eng. & Technol., 7 (2018) 141–144.
DOI: 10.14419/ijet.v7i4.30.22081
Google Scholar
[18]
H.U. Jamo, M.Z. Noh, & Z.A. Ahmad, Effects of mould pressure and substitution of quartz by palm oil fuel ash on compressive strength of porcelain. Adv. Mater. Res., 1087 (2015) 121–125.
DOI: 10.4028/www.scientific.net/amr.1087.121
Google Scholar
[19]
A.K. Nur Azureen, M. Z. Noh, M.M. Zul Hilmi, & S.D.I. Garba, Influence on the phase formation and strength of porcelain by partial substitution of fly ash compositions. Int. J. Eng. & Technol., 7 (2018) 271–275.
Google Scholar
[20]
S.I.D. Garba, M.Z. Noh, A.K. Nur Azureen, A.R. Siti Noraiza, A.R.M. Warikh, J.M. Julie, & M.M. Al Amin, Effect of palm oil fuel ash treatment on physico-mechanical properties of porcelain. AIP Conf. Proceed., 2068 (2019) 020093–020095.
DOI: 10.1063/1.5089392
Google Scholar
[21]
A.M. Zeyad, M.A.M. Johari, N.M. Bunnori, K.S. Ariffin, & N.M. Altwair, Characteristics of treated palm oil fuel ash and its effects on properties of high strength concrete. Adv. Mater. Res., 626 (2013) 152–156.
DOI: 10.4028/www.scientific.net/amr.626.152
Google Scholar
[22]
A.M. Zeyad, M.A.M. Johari, B.A. Tayeh, & M. Olalekan, Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater., 125 (2016) 1066–1079.
DOI: 10.1016/j.conbuildmat.2016.08.065
Google Scholar
[23]
A.I. Borhan, M. Gromada, G.G. Nedelcu, & L. Leontie, Influence of (CoO, CaO, B2O3) additives on thermal and dielectric properties of BaO–Al2O3–SiO2 glass–ceramic sealant for OTM applications. Ceram. Int., 42 (2016) 10459–10468.
DOI: 10.1016/j.ceramint.2016.03.199
Google Scholar
[24]
Z. Jinhua, K. Changming, W. Hongdan, Z. Suxin, & Y. Jishun, Anisotropic grain growth mechanism of mullite derived from cobalt oxide doped diphasic-gels. Rare Metal Mater. & Eng., 44 (2015) 323–326.
DOI: 10.1016/s1875-5372(15)30028-x
Google Scholar
[25]
J.F. Lang, J.G. You, X.F. Zhang, X.D. Luo, & S.Y. Zheng, Effect of MgO on thermal shock resistance of CaZrO3 Ceramic. Ceram. Int., 44 (2018) 22176–22180.
DOI: 10.1016/j.ceramint.2018.08.333
Google Scholar
[26]
D.U. Tulyaganov, S. Agathopoulos, J.M. Ventura, M.A. Karakassides, O. Fabrichnaya, & J.M.F. Ferreira, Synthesis of glass-ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Euro. Ceram. Soc., 26 (2006) 1463–1471.
DOI: 10.1016/j.jeurceramsoc.2005.02.009
Google Scholar
[27]
N.S. Mehta, P.K. Sahu, P. Tripathi, R. Pyare, & M.R. Majhi, Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 57 (2018) 151–159.
DOI: 10.1016/j.bsecv.2017.11.002
Google Scholar
[28]
S. Zhang, X. Gong, Z. Wang, J. Cao, & Z. Guo, Preparation of block CaO from carbide slag and its compressive strength improved by H3PO4. Int. J. Miner. Proc., 129 (2014) 6–11.
DOI: 10.1016/j.minpro.2014.04.003
Google Scholar
[29]
F. Ren, Z. Wang, Z. Ma, J. Su, F. Li, & L. Wang, Effects of Fe2O3 concentration on microstructures and properties of SiC-based ceramic foams. Mater. Sci. & Eng. A, 515 (2009) 113–116.
DOI: 10.1016/j.msea.2009.02.035
Google Scholar
[30]
S.I.D. Garba, M.Z. Noh, A.R. Siti Noraiza, & A.K. Nur Azureen, Effect of iron (111) oxide (Fe2O3) as an additive and substitution of quartz with POFA on physico-mechanical properties of porcelain. Int. J. Nanoelectronics & Mater., 12 (2019) 175–184.
Google Scholar