Influence of Modified Chemical Compositions on Palm Oil Fuel Ash to the Physico-Mechanical Properties of Porcelain

Article Preview

Abstract:

Palm oil fuel ash (POFA) is produced and disposed of by the palm oil industries as waste after burning palm fiber, husk, kernel, and shell as fuel to general electricity in-house. The aim of this research is to investigate the influence of modified chemical compositions on POFA on the physico-mechanical properties of porcelain. POFA was washed with 1, 2, and 3 Molar of HCl acid and heat treated. The powder was partially replaced with quartz at 15 wt.% and mixed in a ball mill machine for 12 hours. Modified POFA (admixture of CaO, Al2O3, MgO, P2O5, SiO2, and Fe2O3) was added to the porcelain composition at 1, 2, 3, 4, 5, 10, and 15 wt.% to measure its influence on physico-mechanical properties of porcelain. The mixture was homogeneously mixed and dry pressed into a pellet at mould pressure 91 MPa and sintered at 1150 °C for 2 hours soaking time. The result of this research shows that these chemical compounds influenced physico-mechanical properties of porcelain, the optimum bulk density, compressive strength, and Vickers micro hardness values were obtained by the addition of modified POFA (admixture of CaO, Al2O3, MgO, P2O5, SiO2, and Fe2O3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

626-632

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Basiron, & M.A. Simeh, Vision 2020 – The palm oil phenomenon. Oil Palm Industry Econ. J., 5 (2005) 1–10.

Google Scholar

[2] K. Wi, H. Lee, S. Lim, H. Song, M.W. Hussin, & M. Ismail, Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Constr. Build. Mater., 183 (2018) 139–149.

DOI: 10.1016/j.conbuildmat.2018.06.156

Google Scholar

[3] M.N.M. Sidek, N.H. Hashim, S.R. Rosseli, M.R.M. Nor, S. Ismail, H.M. Saman, M.F. Arshad, A. Alisibramulisi, & F. Zainudin, Utilisation of palm oil fuel ash (POFA) as cement replacement by using powder and liquidation technique. AIP Conference Proceedings, 2020 (2018) 020069.

DOI: 10.1063/1.5062695

Google Scholar

[4] L. Esposito, A. Tucci, & D. Naldi, The reliability of polished porcelain stoneware tiles. J. Euro. Ceram. Soc., 25 (2005) 1487–1498.

DOI: 10.1016/j.jeurceramsoc.2004.05.030

Google Scholar

[5] P. Lima, A. Zocca, W. Acchar, & J. Günster, 3D printing of porcelain by layerwise slurry deposition. J. Euro. Ceram. Soc., 38 (2018) 3395–3400.

DOI: 10.1016/j.jeurceramsoc.2018.03.014

Google Scholar

[6] A. Zocca, P. Colombo, C.M. Gomes, & J. Gunster, Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Amer. Ceram. Soc., 98 (2015) 1983–(2001).

DOI: 10.1111/jace.13700

Google Scholar

[7] N. Ediz, & A. Yurdakul, Characterization of porcelain tile bodies with colemanite waste added as a new sintering agent. J. Ceram. Proc. Res., 10 (2009) 414–422.

Google Scholar

[8] K. Dana, J. Dey, & S.K. Das, Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditional porcelain tiles. Ceram. Int., 31 (2005) 147–152.

DOI: 10.1016/j.ceramint.2004.04.008

Google Scholar

[9] L. Esposito, A. Salem, A. Tucci, A. Gualtieri, & S.H. Jazayeri, The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceram. Int., 31 (2005) 233–240.

DOI: 10.1016/j.ceramint.2004.05.006

Google Scholar

[10] H.R. Fernandes, & J.M.F. Ferreira, Recycling of chromium-rich leather ashes in porcelain tiles production. J. Euro. Ceram. Soc., 27 (2007) 4657–4663.

DOI: 10.1016/j.jeurceramsoc.2007.03.037

Google Scholar

[11] S. Ferrari, & A.F. Gualtieri, The use of illitic clays in the production of stoneware tile ceramics. Appl. Clay Sci., 32 (2006) 73–81.

DOI: 10.1016/j.clay.2005.10.001

Google Scholar

[12] R.dé, Gennaro, P. Cappelletti, G. Cerri, M.dé, Gennaro, M. Dondi, G. Guarini, A. Langella, & D. Naimo, Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. J. Euro. Ceram. Soc., 23 (2003) 2237–2245.

DOI: 10.1016/s0955-2219(03)00086-4

Google Scholar

[13] A.P. Luz, & S. Ribeiro, Use of glass waste as a raw material in porcelain stoneware tile mixtures. Ceram. Int., 33 (2007) 761–765.

DOI: 10.1016/j.ceramint.2006.01.001

Google Scholar

[14] M. Raimondo, C. Zanelli, F. Matteucci, G. Guarini, M. Dondi, & J.A. Labrincha, Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Ceram. Int., 33 (2007) 615–623.

DOI: 10.1016/j.ceramint.2005.11.012

Google Scholar

[15] E. Rambaldi, W.M. Carty, A. Tucci, & L. Esposito, Using waste glass as a partial flux substitution and pyroplastic deformation of a porcelain stoneware tile body. Ceram. Int., 33 (2007) 727–733.

DOI: 10.1016/j.ceramint.2005.12.010

Google Scholar

[16] A. Tucci, L. Esposito, E. Rastelli, C. Palmonari, & E. Rambaldi, Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J. Euro. Ceram. Soc., 24 (2004) 83–92.

DOI: 10.1016/s0955-2219(03)00121-3

Google Scholar

[17] S.I.D. Garba, M.Z. Noh, A.R. Siti Noraiza, & A.K. Nur Azureen, Physico-mechanical properties of porcelain by substitution of quartz with POFA treated with 2M HCl acid. Int. J. Eng. & Technol., 7 (2018) 141–144.

DOI: 10.14419/ijet.v7i4.30.22081

Google Scholar

[18] H.U. Jamo, M.Z. Noh, & Z.A. Ahmad, Effects of mould pressure and substitution of quartz by palm oil fuel ash on compressive strength of porcelain. Adv. Mater. Res., 1087 (2015) 121–125.

DOI: 10.4028/www.scientific.net/amr.1087.121

Google Scholar

[19] A.K. Nur Azureen, M. Z. Noh, M.M. Zul Hilmi, & S.D.I. Garba, Influence on the phase formation and strength of porcelain by partial substitution of fly ash compositions. Int. J. Eng. & Technol., 7 (2018) 271–275.

Google Scholar

[20] S.I.D. Garba, M.Z. Noh, A.K. Nur Azureen, A.R. Siti Noraiza, A.R.M. Warikh, J.M. Julie, & M.M. Al Amin, Effect of palm oil fuel ash treatment on physico-mechanical properties of porcelain. AIP Conf. Proceed., 2068 (2019) 020093–020095.

DOI: 10.1063/1.5089392

Google Scholar

[21] A.M. Zeyad, M.A.M. Johari, N.M. Bunnori, K.S. Ariffin, & N.M. Altwair, Characteristics of treated palm oil fuel ash and its effects on properties of high strength concrete. Adv. Mater. Res., 626 (2013) 152–156.

DOI: 10.4028/www.scientific.net/amr.626.152

Google Scholar

[22] A.M. Zeyad, M.A.M. Johari, B.A. Tayeh, & M. Olalekan, Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater., 125 (2016) 1066–1079.

DOI: 10.1016/j.conbuildmat.2016.08.065

Google Scholar

[23] A.I. Borhan, M. Gromada, G.G. Nedelcu, & L. Leontie, Influence of (CoO, CaO, B2O3) additives on thermal and dielectric properties of BaO–Al2O3–SiO2 glass–ceramic sealant for OTM applications. Ceram. Int., 42 (2016) 10459–10468.

DOI: 10.1016/j.ceramint.2016.03.199

Google Scholar

[24] Z. Jinhua, K. Changming, W. Hongdan, Z. Suxin, & Y. Jishun, Anisotropic grain growth mechanism of mullite derived from cobalt oxide doped diphasic-gels. Rare Metal Mater. & Eng., 44 (2015) 323–326.

DOI: 10.1016/s1875-5372(15)30028-x

Google Scholar

[25] J.F. Lang, J.G. You, X.F. Zhang, X.D. Luo, & S.Y. Zheng, Effect of MgO on thermal shock resistance of CaZrO3 Ceramic. Ceram. Int., 44 (2018) 22176–22180.

DOI: 10.1016/j.ceramint.2018.08.333

Google Scholar

[26] D.U. Tulyaganov, S. Agathopoulos, J.M. Ventura, M.A. Karakassides, O. Fabrichnaya, & J.M.F. Ferreira, Synthesis of glass-ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Euro. Ceram. Soc., 26 (2006) 1463–1471.

DOI: 10.1016/j.jeurceramsoc.2005.02.009

Google Scholar

[27] N.S. Mehta, P.K. Sahu, P. Tripathi, R. Pyare, & M.R. Majhi, Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 57 (2018) 151–159.

DOI: 10.1016/j.bsecv.2017.11.002

Google Scholar

[28] S. Zhang, X. Gong, Z. Wang, J. Cao, & Z. Guo, Preparation of block CaO from carbide slag and its compressive strength improved by H3PO4. Int. J. Miner. Proc., 129 (2014) 6–11.

DOI: 10.1016/j.minpro.2014.04.003

Google Scholar

[29] F. Ren, Z. Wang, Z. Ma, J. Su, F. Li, & L. Wang, Effects of Fe2O3 concentration on microstructures and properties of SiC-based ceramic foams. Mater. Sci. & Eng. A, 515 (2009) 113–116.

DOI: 10.1016/j.msea.2009.02.035

Google Scholar

[30] S.I.D. Garba, M.Z. Noh, A.R. Siti Noraiza, & A.K. Nur Azureen, Effect of iron (111) oxide (Fe2O3) as an additive and substitution of quartz with POFA on physico-mechanical properties of porcelain. Int. J. Nanoelectronics & Mater., 12 (2019) 175–184.

Google Scholar