Mechanical Enhancement of Composite Bricks Using Kenaf and Oil Palm Cellulose Nanofibrils

Article Preview

Abstract:

The application of nanocellulose has been adapted as fillers in composite bricks. Raw kenaf and oil palm empty fruit bunch were treated through chemical treatment and high intensity ultrasonication process to produce cellulose nanofibrils (CNF). One control brick without CNF and ten CNF composite bricks were fabricated. The composite bricks used different amount of CNF which were 40 - 200 ml mixed with filtered sand, portland cement and pebbles. Physical and mechanical characterization was done by using field emission scanning electron microscopy (FESEM) and universal testing machine (UTM) on CNF and composite bricks. FESEM showed the fibril diameter were ranges from 30 - 80 nm for kenaf and 20 - 60 nm for oil palm. The compression tests showed that control brick, 40 ml kenaf CNF composite brick and 40 ml oil palm CNF composite brick were cracked at force 39.01 kN, 50.46 kN and 42.16 kN respectively. Kenaf CNF composite brick has the highest value of Young’s Modulus which is 28.92 N/mm2, followed by oil palm CNF composite brick with 27.8 N/mm2 and control brick (Malaysia Standard) with 25.8 N/mm2. Kenaf and oil palm CNF can increase the strength of the bricks because of enhancement in their mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

651-657

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Havstad, Chapter 5 - Biodegradable plastics,, in Plastic Waste and Recycling, T. M. Letcher, Ed. Academic Press (2020). 97–129.

DOI: 10.1016/b978-0-12-817880-5.00005-0

Google Scholar

[2] J. H. Kim, B. S. Shim, H. S. Kim, Y. J. Lee, S. K. Min, D. Jang, Z. Abas, and J. Kim, Review Of Nanocellulose For Sustainable Future Materials. International Journal Precis. Engineering and Manufacturing- Green Technology. 2 (2015) 197–213.

DOI: 10.1007/s40684-015-0024-9

Google Scholar

[3] A. A. Septevani, A. Rifathin, A. A. Sari, Y. Sampora, G. N. Ariani, Sudiyarmanto and D. Sondari, Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydrate Polymers. 229 (2019) 115433.

DOI: 10.1016/j.carbpol.2019.115433

Google Scholar

[4] M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak and M. E. Hoque, A review on pineapple leaves fibre and its composites. International Journal of Polymer Science. Vol. (2015).

DOI: 10.1155/2015/950567

Google Scholar

[5] W. Jiang, S. Liu, C. Zhou, S. Gao, Y. Song, W. Li, W. Zhu, Y. Lv and G. Ting, Preparation of nanocellulose directly from kenaf bast: The change in particle size. BioResources. 13 (2019) 5598–5607.

DOI: 10.15376/biores.13.3.5598-5607

Google Scholar

[6] P. Phanthong, P. Reubroycharoen, X. Hao, and G. Xu, Nanocellulose : Extraction and application. Carbon Resource Conversion. 1 (2018) 32–43.

DOI: 10.1016/j.crcon.2018.05.004

Google Scholar

[7] L. N. V. K. D. Lavanya, P.K. Kulkarni, M. Dixit, P. K. Raavi, Sources of cellulose and their applications- A review International Journal Of Drug Formulation And Research Sources Of Cellulose And Their Applications. 2 (2011) 19–38.

Google Scholar

[8] N. A. A. N. Yusuf, M. K. A. A. Razab, M. B. A. Bakar, J.Y. Khor, W. T. Chee, R. S. M. Ghani and M. N. Nordin, Determination of structural, physical, and thermal properties of biocomposite thin film from waste banana peel. Jurnal Teknologi. 81 (2018).

DOI: 10.11113/jt.v81.12599

Google Scholar

[9] N. S. Rosli, S. Harum, J. M. Jahim, and R. Othaman, Chemical and Physical Characterization of Oil Palm Empty Fruit Bunch. Malaysian Journal of Analytical Sciences. 21 (2017)188–196.

DOI: 10.17576/mjas-2017-2101-22

Google Scholar

[10] N. Elias, S. Chandren, N. Attan, N. A. Mahat, F. I. A. Razak, J. Jamalis and R. A. Wahab, Structure And Properties Of Oil Palm-Based Nanocellulose Reinforced Chitosan Nanocomposite For Efficient Synthesis Of Butyl Butyrate. Carbohydrates Polymer. 176 (2017) 281–292.

DOI: 10.1016/j.carbpol.2017.08.097

Google Scholar

[11] C. Pang, R. A. Shanks, and F. Daver, Characterization Of Kenaf Fiber Composites Prepared With Tributyl Citrate Plasticized Cellulose Acetate. Composite Part A Applied Science and Manufacturing. 70 (2014) 52–58.

DOI: 10.1016/j.compositesa.2014.12.003

Google Scholar

[12] Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, A Review On The Degradability Of Polymeric Composites Based On Natural Fibres. Material and Design, 47 (2013) 424–442.

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar

[13] F. A. Mocktar, M. K. A. A. Razab, and A. M. Noor, Incorporating Kenaf And Oil Palm Nanocellulose In Building Materials For Indoor Radon Gas Emanation Reduction. Radiation Protection and Dosimetry. 189 (2020) 69–75.

DOI: 10.1093/rpd/ncaa014

Google Scholar

[14] N. A. Mocktar, M. K. A. Abdul Razab, A. Mohamed Noor, and N. H. Abdullah, Preparation And Characterization Of Kenaf And Oil Palm Nanocellulose By Acid Hydrolysis Method. Material Science Forum. 1010 (2020) 495–500.

DOI: 10.4028/www.scientific.net/msf.1010.495

Google Scholar

[15] S. P. Mishra, A. S. Manent, B. Chabot, and C. Daneault, Production Of Nanocellulose From Native Cellulose - Various Options Utilizing Ultrasound. BioResources. 7 (2012) 422–435.

DOI: 10.15376/biores.6.1.121-143

Google Scholar

[16] M. K. A. Abdul Razab, R. S. Mohd Ghani, F. A. Mohd Zin, N. A. A. Nik Yusoff, and A. Mohamed Noor, Isolation and Characterization of Cellulose Nanofibrils from Banana Pseudostem, Oil Palm Trunk, and Kenaf Bast Fibers Using Chemicals and High-intensity Ultrasonication. Journal of Natural Fibers. (2021) 1–14.

DOI: 10.1080/15440478.2021.1881021

Google Scholar

[16] S. N. Surip, W. N. R. Wan Jaafar, N. N. Azmi, and U. M. K. Anwar, Microscopy Observation On Nanocellulose From Kenaf Fibre. Advanced Material Resources. 488 (2012) 72–75.

DOI: 10.4028/www.scientific.net/amr.488-489.72

Google Scholar

[18] L. Jasmania, W. Thielemans, Preparation Of Nanocellulose And Its Potential Application. International Journal Of Nanomater, Nanotechnology and Nanomedicine. 4 (2018) 14–21.

DOI: 10.17352/2455-3492.000026

Google Scholar

[19] M. K. A. A. Razab, R. S. Mohd Ghani, A. M. Noor, N. A. Mocktar, F. A. Mohd Zin, N. H. Abdullah, N. A. A. Nik Yusuf and M. Mohamed, Kenaf Cellulose Nanofibrils As Mechanical Enhancers Of Composite Brick," AIP Conference Proceedings. 2068 (2019) 1–6.

DOI: 10.1063/1.5089370

Google Scholar

[20] M. T. Nooman, Effect of Zeolite Inclusion on Some Properties of Concrete and Corrosion Rate of Reinforcing Steel Bars Imbedded in Concrete. IOSR Journal: Mechanical and Civil Engineering e-ISSN. 13 (2016) 51–59.

Google Scholar

[21] M. R. K. Sofla, R. J. Brown, T. Tsuzuki, and T. J. Rainey, A Comparison Of Cellulose Nanocrystals And Cellulose Nanofibres Extracted From Bagasse Using Acid And Ball Milling Methods. Advanced Natural Science: Nanoscience, Nanotechnology. 7 (2016).

DOI: 10.1088/2043-6262/7/3/035004

Google Scholar