Large-Scale Synthesis of Molybdenum Carbide Based Catalyst by Vacuum-Free DС Arc Plasma Method

Article Preview

Abstract:

The paper presents experimental studies on the synthesis of materials based on molybdenum carbide, which can be used as a catalyst for hydrogen production by water splitting. We successfully carried out experiments to scale up the process, namely, the amount of the synthesized product was increased by 4 times with the same parameters of the experimental setup. In this case, the specific energy decreases taking into account the increase in the mass of the product. The energy intensity of the material obtained has been reduced from 520 kJ/g to 130 kJ/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1026-1031

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Li, et al., Current progress of molybdenum carbide-based materials for electrocatalysis: potential electrocatalysts with diverse applications, Materials Today Chemistry 19 (2021) 100411.

DOI: 10.1016/j.mtchem.2020.100411

Google Scholar

[2] E. Karaca, S. Baǧcı, H. M. Tütüncü, H. Y. Uzunok & G. P. Srivastava, Theoretical investigation of electron-phonon interaction in the orthorhombic phase of Mo2C, J. Alloys Compd. 788 (2019) 842–851.

DOI: 10.1016/j.jallcom.2019.02.243

Google Scholar

[3] K. Wu, et al., Synthesis-Controlled α- and β-Molybdenum Carbide for Base-Promoted Transfer Hydrogenation of Lignin to Aromatic Monomers in Ethanol, Ind. Eng. Chem. Res. 58 (2019) 20270–20281.

DOI: 10.1021/acs.iecr.9b04910

Google Scholar

[4] Y. Tao, S. Zhu, Z. Pan, S. Qiu & X. Shen, Preparation and process investigation of molybdenum carbide and their N-doped analogue by calcination, J. Solid State Chem. 280 (2019) 120961.

DOI: 10.1016/j.jssc.2019.120961

Google Scholar

[5] J. Zhao, Y. Bai, X. Liang, T. Wang & C. Wang, Photothermal catalytic CO2 hydrogenation over molybdenum carbides: Crystal structure and photothermocatalytic synergistic effects, J. CO2 Utilization 49 (2021) 101562.

DOI: 10.1016/j.jcou.2021.101562

Google Scholar

[6] H. Gao, et al., Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane, Inorg. Chem. Front. 5 (2018) 90–99.

DOI: 10.1039/c7qi00532f

Google Scholar

[7] C. Wu & J. Li, Unique Hierarchical Mo2C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces 9 (2017) 41314–41322.

DOI: 10.1021/acsami.7b13822

Google Scholar

[8] Y.Y. Chen, et al., Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution, ACS Nano 10 (2016) 8851–8860.

DOI: 10.1021/acsnano.6b04725.s001

Google Scholar

[9] J. Deng, et al., Molybdenum carbide-nitrogen doped carbon composites as effective non-precious electrocatalyst for direct hydrazine fuel cell, Electrochim. Acta 384 (2021) 138417.

DOI: 10.1016/j.electacta.2021.138417

Google Scholar

[10] L.F. Chen, C.C. Hou, L.L. Zou, M. Kitta & Q. Xu, Uniformly bimetal-decorated holey carbon nanorods derived from metal-organic framework for efficient hydrogen evolution, Sci. Bull. 66 (2021) 170–178.

DOI: 10.1016/j.scib.2020.06.022

Google Scholar

[11] J. Xing, et al., Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting, Electrochim. Acta 298 (2019) 305–312.

DOI: 10.1016/j.electacta.2018.12.091

Google Scholar

[12] D. Yang, M. Chen, S. Wu, D. Zhou & C. Liu, Achieving enhanced electrocatalytic performance towards hydrogen evolution of molybdenum carbide via morphological control, J. Alloys Compd. 881 (2021) 160593.

DOI: 10.1016/j.jallcom.2021.160593

Google Scholar

[13] C. A. Wolden, et al., Synthesis of β-Mo2C thin films, ACS Appl. Mater. Interfaces 3 (2011) 517–521.

Google Scholar

[14] Z. Liu, et al., Unique domain structure of two-dimensional α-Mo2C superconducting crystals, Nano Lett. 16 (2016) 4243–4250.

Google Scholar

[15] L. Zhao, et al., Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction, Nano Energy 77 (2020) 105056.

DOI: 10.1016/j.nanoen.2020.105056

Google Scholar

[16] S. Khabbaz, A. Honarbakhsh-Raouf, A. Ataie & M. Saghafi, Effect of processing parameters on the mechanochemical synthesis of nanocrystalline molybdenum carbide, Int. J. Refract. Met. Hard Mater. 41 (2013) 402–407.

DOI: 10.1016/j.ijrmhm.2013.05.014

Google Scholar

[17] J.A. Schaidle, N.M. Schweitzer, O.T. Ajenifujah & L.T. Thompson, On the preparation of molybdenum carbide-supported metal catalysts, J. Catal. 289 (2012) 210–217.

DOI: 10.1016/j.jcat.2012.02.012

Google Scholar

[18] Y. Saito, T. Matsumoto & K. Nishikubo, Encapsulation of carbides of chromium, molybdenum and tungsten in carbon nanocapsules by arc discharge, J. Cryst. Growth 172 (1997) 163–170.

DOI: 10.1016/s0022-0248(96)00709-9

Google Scholar

[19] B. B. Nayak, T. Dash & S. Pradhan, Spectroscopic evaluation of tungsten carbide-titanium carbide composite prepared by arc plasma melting, J. Electron Spectrosc. Relat. Phenom. 245 (2020) 146993.

DOI: 10.1016/j.elspec.2020.146993

Google Scholar

[20] J. Zhao, et al. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties, Carbon N. Y. 58 (2013) 92–98.

DOI: 10.1016/j.carbon.2013.02.036

Google Scholar

[21] J.A. Berkmans, M. Jagannatham, R.D. Reddy & P. Haridoss, Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere, Diam. Relat. Mater. 55 (2015) 12–15.

DOI: 10.1016/j.diamond.2015.02.004

Google Scholar

[22] Y.Z. Vassilyeva, D.S. Butenko, S. Li, W. Han & A.Y. Pak, Synthesis of molybdenum carbide catalyst by DC arc plasma in ambient air for hydrogen evolution, Mater. Chem. Phys. 254 (2020) 123509.

DOI: 10.1016/j.matchemphys.2020.123509

Google Scholar

[23] J. Guardia-Valenzuela, et al. Development and properties of high thermal conductivity molybdenum carbide – graphite composites, Carbon 135 (2018) 72−84.

DOI: 10.1016/j.carbon.2018.04.010

Google Scholar

[24] O.P. Pandey & S. Upadhyay, One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction, Int. J. Hydrogen Energy 45 (2020) 27114–27128.

DOI: 10.1016/j.ijhydene.2020.07.069

Google Scholar

[25] X. Wang, Y. Luo, L. Chi & D. Fan, Numerical investigation of transport phenomena of arc plasma in argon-oxygen gas mixture, Int. J. Heat Mass Transfer 154 (2020) 119708.

DOI: 10.1016/j.ijheatmasstransfer.2020.119708

Google Scholar

[26] T. Shimizu, S. Tashiro, M. Tanaka & T. Inaba, Simulating effects of gas flow on arc plasma to anode heat transfer during incinerator ash treatment, Thin Solid Films 518 (2009) 952–956.

DOI: 10.1016/j.tsf.2009.07.165

Google Scholar

[27] J.-S. Li, et al., Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution, Nat. Commun. 7 (2016) 11204.

Google Scholar

[28] J. Deng, P. Ren, D. Deng & X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction, Angew. Chem. Int. Ed Engl. 54 (2015) 2100–2104.

DOI: 10.1002/anie.201409524

Google Scholar

[29] Y. Huang, C. Wang, H. Song, Y. Bao & X. Lei, Carbon-coated molybdenum carbide nanosheets derived from molybdenum disulfide for hydrogen evolution reaction, Int. J. Hydrogen Energy 43, (2018) 12610–12617.

DOI: 10.1016/j.ijhydene.2018.03.233

Google Scholar