[1]
Y. Li, et al., Current progress of molybdenum carbide-based materials for electrocatalysis: potential electrocatalysts with diverse applications, Materials Today Chemistry 19 (2021) 100411.
DOI: 10.1016/j.mtchem.2020.100411
Google Scholar
[2]
E. Karaca, S. Baǧcı, H. M. Tütüncü, H. Y. Uzunok & G. P. Srivastava, Theoretical investigation of electron-phonon interaction in the orthorhombic phase of Mo2C, J. Alloys Compd. 788 (2019) 842–851.
DOI: 10.1016/j.jallcom.2019.02.243
Google Scholar
[3]
K. Wu, et al., Synthesis-Controlled α- and β-Molybdenum Carbide for Base-Promoted Transfer Hydrogenation of Lignin to Aromatic Monomers in Ethanol, Ind. Eng. Chem. Res. 58 (2019) 20270–20281.
DOI: 10.1021/acs.iecr.9b04910
Google Scholar
[4]
Y. Tao, S. Zhu, Z. Pan, S. Qiu & X. Shen, Preparation and process investigation of molybdenum carbide and their N-doped analogue by calcination, J. Solid State Chem. 280 (2019) 120961.
DOI: 10.1016/j.jssc.2019.120961
Google Scholar
[5]
J. Zhao, Y. Bai, X. Liang, T. Wang & C. Wang, Photothermal catalytic CO2 hydrogenation over molybdenum carbides: Crystal structure and photothermocatalytic synergistic effects, J. CO2 Utilization 49 (2021) 101562.
DOI: 10.1016/j.jcou.2021.101562
Google Scholar
[6]
H. Gao, et al., Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane, Inorg. Chem. Front. 5 (2018) 90–99.
DOI: 10.1039/c7qi00532f
Google Scholar
[7]
C. Wu & J. Li, Unique Hierarchical Mo2C/C Nanosheet Hybrids as Active Electrocatalyst for Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces 9 (2017) 41314–41322.
DOI: 10.1021/acsami.7b13822
Google Scholar
[8]
Y.Y. Chen, et al., Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution, ACS Nano 10 (2016) 8851–8860.
DOI: 10.1021/acsnano.6b04725.s001
Google Scholar
[9]
J. Deng, et al., Molybdenum carbide-nitrogen doped carbon composites as effective non-precious electrocatalyst for direct hydrazine fuel cell, Electrochim. Acta 384 (2021) 138417.
DOI: 10.1016/j.electacta.2021.138417
Google Scholar
[10]
L.F. Chen, C.C. Hou, L.L. Zou, M. Kitta & Q. Xu, Uniformly bimetal-decorated holey carbon nanorods derived from metal-organic framework for efficient hydrogen evolution, Sci. Bull. 66 (2021) 170–178.
DOI: 10.1016/j.scib.2020.06.022
Google Scholar
[11]
J. Xing, et al., Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting, Electrochim. Acta 298 (2019) 305–312.
DOI: 10.1016/j.electacta.2018.12.091
Google Scholar
[12]
D. Yang, M. Chen, S. Wu, D. Zhou & C. Liu, Achieving enhanced electrocatalytic performance towards hydrogen evolution of molybdenum carbide via morphological control, J. Alloys Compd. 881 (2021) 160593.
DOI: 10.1016/j.jallcom.2021.160593
Google Scholar
[13]
C. A. Wolden, et al., Synthesis of β-Mo2C thin films, ACS Appl. Mater. Interfaces 3 (2011) 517–521.
Google Scholar
[14]
Z. Liu, et al., Unique domain structure of two-dimensional α-Mo2C superconducting crystals, Nano Lett. 16 (2016) 4243–4250.
Google Scholar
[15]
L. Zhao, et al., Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction, Nano Energy 77 (2020) 105056.
DOI: 10.1016/j.nanoen.2020.105056
Google Scholar
[16]
S. Khabbaz, A. Honarbakhsh-Raouf, A. Ataie & M. Saghafi, Effect of processing parameters on the mechanochemical synthesis of nanocrystalline molybdenum carbide, Int. J. Refract. Met. Hard Mater. 41 (2013) 402–407.
DOI: 10.1016/j.ijrmhm.2013.05.014
Google Scholar
[17]
J.A. Schaidle, N.M. Schweitzer, O.T. Ajenifujah & L.T. Thompson, On the preparation of molybdenum carbide-supported metal catalysts, J. Catal. 289 (2012) 210–217.
DOI: 10.1016/j.jcat.2012.02.012
Google Scholar
[18]
Y. Saito, T. Matsumoto & K. Nishikubo, Encapsulation of carbides of chromium, molybdenum and tungsten in carbon nanocapsules by arc discharge, J. Cryst. Growth 172 (1997) 163–170.
DOI: 10.1016/s0022-0248(96)00709-9
Google Scholar
[19]
B. B. Nayak, T. Dash & S. Pradhan, Spectroscopic evaluation of tungsten carbide-titanium carbide composite prepared by arc plasma melting, J. Electron Spectrosc. Relat. Phenom. 245 (2020) 146993.
DOI: 10.1016/j.elspec.2020.146993
Google Scholar
[20]
J. Zhao, et al. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties, Carbon N. Y. 58 (2013) 92–98.
DOI: 10.1016/j.carbon.2013.02.036
Google Scholar
[21]
J.A. Berkmans, M. Jagannatham, R.D. Reddy & P. Haridoss, Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere, Diam. Relat. Mater. 55 (2015) 12–15.
DOI: 10.1016/j.diamond.2015.02.004
Google Scholar
[22]
Y.Z. Vassilyeva, D.S. Butenko, S. Li, W. Han & A.Y. Pak, Synthesis of molybdenum carbide catalyst by DC arc plasma in ambient air for hydrogen evolution, Mater. Chem. Phys. 254 (2020) 123509.
DOI: 10.1016/j.matchemphys.2020.123509
Google Scholar
[23]
J. Guardia-Valenzuela, et al. Development and properties of high thermal conductivity molybdenum carbide – graphite composites, Carbon 135 (2018) 72−84.
DOI: 10.1016/j.carbon.2018.04.010
Google Scholar
[24]
O.P. Pandey & S. Upadhyay, One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction, Int. J. Hydrogen Energy 45 (2020) 27114–27128.
DOI: 10.1016/j.ijhydene.2020.07.069
Google Scholar
[25]
X. Wang, Y. Luo, L. Chi & D. Fan, Numerical investigation of transport phenomena of arc plasma in argon-oxygen gas mixture, Int. J. Heat Mass Transfer 154 (2020) 119708.
DOI: 10.1016/j.ijheatmasstransfer.2020.119708
Google Scholar
[26]
T. Shimizu, S. Tashiro, M. Tanaka & T. Inaba, Simulating effects of gas flow on arc plasma to anode heat transfer during incinerator ash treatment, Thin Solid Films 518 (2009) 952–956.
DOI: 10.1016/j.tsf.2009.07.165
Google Scholar
[27]
J.-S. Li, et al., Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution, Nat. Commun. 7 (2016) 11204.
Google Scholar
[28]
J. Deng, P. Ren, D. Deng & X. Bao, Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction, Angew. Chem. Int. Ed Engl. 54 (2015) 2100–2104.
DOI: 10.1002/anie.201409524
Google Scholar
[29]
Y. Huang, C. Wang, H. Song, Y. Bao & X. Lei, Carbon-coated molybdenum carbide nanosheets derived from molybdenum disulfide for hydrogen evolution reaction, Int. J. Hydrogen Energy 43, (2018) 12610–12617.
DOI: 10.1016/j.ijhydene.2018.03.233
Google Scholar