[1]
P.M. Ogar, D.B. Gorokhov, A.S. Kozhevnikov, Contact problems in hermetic sealing studies of fixed joint, BrGU, Bratsk, (2017).
Google Scholar
[2]
E. Meyer, Untersuchen uber Harteprufung und Harte. Zeitschrift des Vereins Deutschen Ingenieure. 52 (1908) 645-654.
Google Scholar
[3]
N.B. Demkin, Contacting rough surfaces, Nauka, Moscow, (1970).
Google Scholar
[4]
N.K. Myshkin, M.I. Petrokovets, Friction, lubrication, wear. Physical basis and engineering applications of tribology., FIZMATLIT, Moscow, (2007).
Google Scholar
[5]
A.N. Bolotov, V.V. Meshkov, O.V. Sutyagin, M.V. Vasiliev, Influence of hardening on the characteristics of elastic-plastic contact surface roughness. Bulletin of Samara Scientific Center RAS-tion. 15 (2013) 313-315.
Google Scholar
[6]
P.M. Ogar, V.A. Tarasov, D.B. Gorokhov, A.V. Turchenko, The account of hardening material characteristics in applying of Meyer's empirical law. Syst. Meth. Tech. 4 (2013) 50-54.
Google Scholar
[7]
P.M. Ogar, D.B. Gorokhov, Meyer law application for solving problems of surface plastic deformation by spherical indentation. Appl. Mech. & Mat. 788 (2015) 199-204.
DOI: 10.4028/www.scientific.net/amm.788.199
Google Scholar
[8]
S.I. Bulychev, Transition from indentation diagrams to stress-strain diagrams taking into consideration hardened surface layer. Def. and frac. of mat. 2 (2010) 43-48.
Google Scholar
[9]
S.I. Bulychev, Hardness and hysteresis at the yield strength. Def. and frac. of mat. 1 (2011) 41-45.
Google Scholar
[10]
P. Jiang, T. Zhang, Y. Feng, R. Yang, N. Liang, Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach. J. of Mat. Res. 24 (2009) 1045-1053.
DOI: 10.1557/jmr.2009.0108
Google Scholar
[11]
P.M. Ogar, D.B. Gorokhov, The relationship between the deformation of spherical indentation and tensile deformation. Key Engineering Materials. 723 (2016) 363-368.
DOI: 10.4028/www.scientific.net/kem.723.363
Google Scholar
[12]
J. H. Hollomon, Tensile Deformation, Trans. Metallurgical Society of AIME. 162 (1945) 268-290.
Google Scholar
[13]
P.M. Ogar, D.B. Gorokhov, Parameters for elastic-plastic body to calculate contact characteristics under the sphere indentation, Syst. Meth. Tech. 1 (2016) 28-32.
Google Scholar
[14]
M.P. Markovets, Determining metal mechanical properties by their hardness, Mashinostroenie, Moscow, (1979).
Google Scholar
[15]
S.I. Bulychev, V.P. Alekhin, Testing of materials by continuous depression of an indenter, Mashinostroenie, Moscow, (1990).
Google Scholar
[16]
M. Gaško, G. Rosenberg, Correlation between hardness and tensile properties in ultra-high strength dual phase steels – short communication, Mat. Eng. 18 (2011) 155-159.
Google Scholar
[17]
A.V. Grushko, Determination of the material flow curve by standard mechanical characteristics, Bulletin of Kiev Polytechnic Institute,. Series: mech. Eng., 60 (2010) 223-227.
Google Scholar
[18]
D.Tabor, The hardness of metals, Oxford University press, Great Britain, (1951).
Google Scholar
[19]
V.M. Zaitsev, Brinell hardness as a function of the plasticity parameters of materials, Factory laboratory. 15 (1949) 704-717.
Google Scholar
[20]
P.Ogar, D.Gorokhov, S. Belokobylsky, The elastic-plastic contact of a single asperity of a rough surface, MATEC Web of Conferences. 129 (2017) 06017.
DOI: 10.1051/matecconf/201712906017
Google Scholar
[21]
V.M. Matyunin, Express-diagnosis of mechanical properties of constructional materials, Izd. dom MEI, Moscow, (2006).
Google Scholar
[22]
V.M. Matyunin, A.Y. Marchenkov, Interrelation between strains and parameters of metal strengthening upon tension and indentation in plastic region, Inorg. Mat. 53 (2017) 1555-1561.
DOI: 10.1134/s0020168517150110
Google Scholar
[23]
GOST R 56232-2014, Standartinform, Moscow, (2015).
Google Scholar
[24]
X. Hernot, O. Bartier, Y. Bekouche, R. El Abdi, G. Mauvoisin, Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Sol. & Struct. 43 (2006) 4136-4153.
DOI: 10.1016/j.ijsolstr.2005.06.007
Google Scholar
[25]
J.-M. Collin, G. Mauvoisin, R. El Abdi, An experimental method to determine the contact radius changes during a spherical instrumented indentation, Mech. of Mat. 40 (2008) 401–406.
DOI: 10.1016/j.mechmat.2007.10.002
Google Scholar
[26]
H. Lee, J.H. Lee, G.M. Pharr, A numerical approach to spherical indentation techniques for material property evaluation, J. Mech. Phys. Solids. 53 (2005) 2037-2069.
DOI: 10.1016/j.jmps.2005.04.007
Google Scholar
[27]
H. Lee, T. Kim, H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals, Int. J. Sol. & Struct. 47 (2010) 647–664.
DOI: 10.1016/j.ijsolstr.2009.11.003
Google Scholar
[28]
S.H. Kim, B.W. Lee, Y. Choi, D. Kwon, Quantitative determination of contact depth during spherical indentation of metallic materials-a FEM study, Mat. Sci. & Eng. 415 (2006) 59-65.
DOI: 10.1016/j.msea.2005.08.217
Google Scholar
[29]
T. Zhang, S. Wang, W. Wang, An energy-based method for flow property determination from a single-cycle spherical indentation test (SIT), Int. J. of Mech. Sci. 171 (2020) 105369.
DOI: 10.1016/j.ijmecsci.2019.105369
Google Scholar
[30]
J.L. Hay and P.J. Wolff, Small correction required when applying the Hertzian contact model to instrumented indentation data, J. Mater. Res. 16 (2001) 1280-1285.
DOI: 10.1557/jmr.2001.0179
Google Scholar
[31]
J.-M. Collin, Correction factor for contact radius in spherical indentation measurements, Mech. of Mat. 50 (2012) 47–52.
DOI: 10.1016/j.mechmat.2012.02.007
Google Scholar
[32]
P.M. Ogar, V.A Tarasov, Kinetic Indentation Application to Determine Contact Characteristics of Sphere and Elastoplastic Half-Space, Adv. Mat. Res. 664 (2013) 625-631.
DOI: 10.4028/www.scientific.net/amr.664.625
Google Scholar
[33]
P. Ogar, D.Gorokhov, A. Zhuk, V. Kushnarev, Contact geometry during indentation of a sphere into an elastoplastic half-space, MATEC Web of Conf.. 298 (2019) 00093.
DOI: 10.1051/matecconf/201929800093
Google Scholar
[34]
J.-M. Collin, G. Mauvoisin, P. Pilvin, Materials characterization by instrumented indentation using two different approaches, Mat. & Desing. 31 (2010) 636-640.
DOI: 10.1016/j.matdes.2009.05.043
Google Scholar
[35]
T. Zhang, S. Wang, W. Wang, Method to determine the optimal constitutive model from spherical indentation tests, Results in Physics 8 (2018) 716–727.
DOI: 10.1016/j.rinp.2018.01.019
Google Scholar