[1]
Y. Li, J. Li, W. Li, H. Du, A state-of-the-art review on magnetorheological elastomer devices, Smart Mater. Struct. 23 (2014) 123001.
DOI: 10.1088/0964-1726/23/12/123001
Google Scholar
[2]
E. Dohmen, M. Boisly, D. Y. Borin, M. Kästner, V. Ulbricht, M. Gude, W. Hufenbach, G. Heinrich, S. Odenbach, Advancing towards polyurethane-based magnetorheological composites, Advanced Engineering Materials. 16 (2014) 1270-1275.
DOI: 10.1002/adem.201400205
Google Scholar
[3]
Ch. Hintze, D. Yu. Borin, D. Ivaneyko, V. Toshchevikov, M. Saphiannikova-Grenzer, G. Heinrich, Soft magnetic Elastomers with controllable Stiffness: Experiments and Modelling, Kgk-Kautschuk Gummi Kunststoffe. 67 (2014) 53-59.
Google Scholar
[4]
D. Ivaneyko, V. Toshchevikov, D. Borin, M. Saphiannikova, G. Heinrich, Mechanical Properties of Magneto-Sensitive Elastomers in a Homogeneous Magnetic Field: Theory and Experiment, Macromolecular Symposia. 338 (2014) 96-107.
DOI: 10.1002/masy.201450401
Google Scholar
[5]
Ubaidillah, J. Sutrisno, A. Purwanto, S.A. Mazlan, Recent progress on magnetorheological solids: materials, fabrication, testing, and applications, Adv. Eng. Mater. 17 (2015) 563-597.
DOI: 10.1002/adem.201400258
Google Scholar
[6]
A.Yu. Zubarev, D. Yu. Borin, Effect of particle concentration on ferrogel magnetodeformation, Journal of Magnetism and Magnetic Materials. 377 (2015) 373-377.
DOI: 10.1016/j.jmmm.2014.10.141
Google Scholar
[7]
D. Yu. Borin, S. Odenbach, Initial magnetic susceptibility of the diluted magnetopolymer elastic composites, Journal of Magnetism and Magnetic Materials. 431 (2017) 115–119.
DOI: 10.1016/j.jmmm.2016.07.055
Google Scholar
[8]
Yu. A. Alekhina, I. A. Makarova, T. S. Rusakova, A. S. Semisalova, N. S. Perov, 2017 Properties of magnetorheological elastomers in crossed ac and dc magnetic fields, Journal of the Siberian Federal University. Series: Mathematics and Physics. 10 (2017) 45-50.
DOI: 10.17516/1997-1397-2017-10-1-45-50
Google Scholar
[9]
D. Yu. Borin, D. Chirikov, A. Zubarev, Shear elasticity of magnetic gels with internal structures, Sensors. 18 (2018) (2054).
DOI: 10.3390/s18072054
Google Scholar
[10]
M. Vaganov M., D.Y. Borin D.Y., S. Odenbach S., Y.L. Raikher Y.L., Modeling the magnetomechanical behavior of a multigrain magnetic particle in an elastic environment, Soft Matter 15 (2019) 4947.
DOI: 10.1039/c9sm00736a
Google Scholar
[11]
A.M. Menzel, Mesoscopic characterization of magnetoelastic hybrid materials: magnetic gels and elastomers, their particle-scale description, and scale-bridging links, Archive of Applied Mechanics. 89 (2019) 17–45.
DOI: 10.1007/s00419-018-1413-7
Google Scholar
[12]
M. Watanabe, M. Kawai, T. Mitsumata, Y. Tanaka, D. Murakami, M. Tanaka, Optimal plasticizer content for magnetic elastomers used for cell culture substrate, Chemistry Letters, Japan. 49 (2020) 280-283.
DOI: 10.1246/cl.190929
Google Scholar
[13]
A.Ya. Minaev, Yu.V. Korovkin, G.V. Stepanov, H.H. Valiev, Studies on dynamic deformations of magnetorheological elastomer, MSTU 2020 Journal of Physics: Conference Series. 1546 (2020) 012136.
DOI: 10.1088/1742-6596/1546/1/012136
Google Scholar
[14]
H.H. Valiev, A.Ya. Minaev, G.V. Stepanov, Yu.N. Karnet, O.B. Yumashev, Scanning probe microscopy of magnetorheological elastomers, Surface. X-ray, synchrotron and neutron research. No 9 (2019) 40-43.
DOI: 10.1134/s1027451019050161
Google Scholar
[15]
H.H. Valiev, V.M. Cherepanov, Yu.N. Karnet, A. Ja. Minaev, G.V. Stepanov, Atomic force microscopy and Mössbauer spectroscopy of magnetically active silicone elastomers, MIP: Engineering-2020 IOP Conf. Series: Materials Science and Engineering. 862 (2020) 022062.
DOI: 10.1088/1757-899x/862/2/022062
Google Scholar