The Structure and Characteristics of Wear-Resistant Coatings, Obtained by Supersonic Plasma Spraying

Article Preview

Abstract:

The characteristics of coatings designed to protect against cavitation and waterjet wear, obtained by supersonic atmospheric plasma spraying using air as a plasma-forming gas, are studied. The following powder materials were selected for coating: WC/10Co4Cr; Ni-Cr-B-Si-C; Ni-Al; Ni-Ti; bronze. Metallographic studies of the structures of specimens with applied coatings and measurements of their microhardness were carried out. Due to the fact that the tests of materials for hydroabrasive wear are not standardized, studies were carried out on the resistance of coatings to dry abrasive wear according to the ASTM G65-04 standard and to dry reciprocating friction according to the ASTM G133 standard. The conducted studies of the structures of the sprayed coatings suggest that the use of supersonic deposition modes guarantees the production of high-density coatings with a porosity of less than 1 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1087-1095

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, Journal of Thermal Spray Technology, 25(6) (2016) 1217-1230.

DOI: 10.1007/s11666-016-0427-3

Google Scholar

[2] Q. Wang, Z. Tang, L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, Journal of Materials Engineering and Performance, 24(6) (2015) 2435-2443.

DOI: 10.1007/s11665-015-1496-z

Google Scholar

[3] Qun Wang, Shiying Zhang, Yingliang Cheng, Jing Xiang, Xinqi Zhao, Guibin Yang. Wear and corrosion performance of WC-10Co4Cr coatings deposited by different HVOF and HVAF spraying processes. Surface & Coatings Technology, 2012, рр. 1-10. doi. 10.1016/j.surfcoat.2012.12.041.

DOI: 10.1016/j.surfcoat.2012.12.041

Google Scholar

[4] Qun Wang, Zhaoxi Tang, and Limei Cha. Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings. Journal of Materials Engineering and Performance, 2015, рр. 7-15.

DOI: 10.1007/s11665-015-1496-z

Google Scholar

[5] G. Bolelli, L. Lusvarghi, M. Barletta. HVOF-sprayed WC–CoCr coatings on Al alloy: Effect of the coatingthickness on the tribological properties. Wear, 2009, рр. 944-953.

DOI: 10.1016/j.wear.2008.12.066

Google Scholar

[6] S.B. Zlobin, V.Yu. Ulianitsky, A.A. Shtertser, I. Smurov. High-Velocity Collision of Hot Particles with Solid Substrate under Detonation Spraying: Detonation Splats. Thermal Spray 2009: Proceedings of the International Thermal Spray Conference, 2009, рр. 714-717.

DOI: 10.31399/asm.cp.itsc2009p0714

Google Scholar

[7] Pei Wei, Zhengying Wei, Guangxi Zhao, Y. Bai and Chao Tan. Pei Wei, Zhengying Wei, Guangxi Zhao, Y. Bai and Chao Tan. Effect of Processing Parameters on Plasma Jet and In flight Particles Characters in Supersonic Plasma Spraying. High Temp. Mater. Proc. 2015, рр. 1-12. doi 10.1515/htmp-2015-0077.

DOI: 10.1515/htmp-2015-0077

Google Scholar

[8] Sultan Al-Mutairi, M.S.J. Hashmi, B.S. Yilbas, J. Stokes. Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC–12%Co powders. Surface & Coatings Technology, 2015, рр. 175-186. doi.10.1016/j.surfcoat.2014.12.050.

DOI: 10.1016/j.surfcoat.2014.12.050

Google Scholar

[9] F.R. Caliari, F.S. Miranda, D.A.P. Reis, G.P. Filho, L.I. Charakhovski, A. Essiptchouk. Plasma torch for supersonic plasma spray at atmospheric pressure. Journal of Materials Processing Technology, 2016, рр. 351-360. doi.10.1016/j.jmatprotec.2016.06.027 0924-0136/© 2016 Elsevier B.V. All rights reserved.

DOI: 10.1016/j.jmatprotec.2016.06.027

Google Scholar

[10] S. A. Alidokht, P. Vo, S. Yue, R. R. Chromik. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings. J Therm Spray Tech., 2017, рр. 1908-1921. doi.10.1007/s11666-017-0636-4.

DOI: 10.1007/s11666-017-0636-4

Google Scholar

[11] L. Janka, J. Norpoth, R. Trache, S. Thiele, L.-M. Berger. HVOF- and HVAF-Sprayed Cr 3 C 2 -NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800° C. J Therm Spray Tech., 2017, рр. 1720-1731. DOI 10.1007/s11666-017-0621-y.

DOI: 10.1007/s11666-017-0621-y

Google Scholar

[12] F. R. Caliari, F. S. Miranda, D. A. P. Reis, A. M. Essiptchouk, G. P. Filho. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy. J Therm Spray Tech., 2017, рр. 880–889. doi. 10.1007/s11666-017-0563-4.

DOI: 10.1007/s11666-017-0563-4

Google Scholar

[13] W. Tillmann, C. Schaak, L. Hagen, G. Mauer, G. Matthaus. Internal Diameter Coating Processes for Bond Coat (HVOF) and Thermal Barrier Coating (APS) Systems. J Therm Spray Tech., 2019, рр. 233-241. doi.10.1007/s11666-018-0781-4.

DOI: 10.1007/s11666-018-0781-4

Google Scholar

[14] Yanqiu Xiao, Erzhou Ren, Mingyang Hu, and Kun Liu. Effect of Particle In-Flight Behavior on the Microstructure and Fracture Toughness of YSZ TBCs Prepared by Plasma Spraying. Coatings, 2018, рр. 1-11.

DOI: 10.3390/coatings8090309

Google Scholar

[15] Tommi Varis, Tomi Suhonen, Jarmo Laakso, Mika Jokipii, Petri Vuoristo. Evaluation of Residual Stresses and Their Influence on Cavitation Erosion Resistance of High Kinetic HVOF and HVAF-Sprayed WC-CoCr Coatings. J Therm Spray Tech., 2020, рр. 1365-1381. doi.10.1007/s11666-020-01037-2.

DOI: 10.1007/s11666-020-01037-2

Google Scholar

[16] Mehmet Kilic, Dervis Ozkan,Mustafa Sabri Gok and Abdullah Cahit Karaoglanli. Room- and High-Temperature Wear Resistance of MCrAlY Coatings Deposited by Detonation Gun (D-gun) and Supersonic Plasma Spraying (SSPS) Techniques. Coatings, 2020, рр. 1-12.

DOI: 10.3390/coatings10111107

Google Scholar

[17] V.I. Kuzmin, A.A. Mikhal'chenko, O.B. Kovalev, E.V. Kartaev, N.A. Rudenskaya. The technique of formation of the axisymmetric heterogeneous flow for thermal spraying of powder materials. Journal of Thermal Spray Technology. 21,159-168 (2012).

DOI: 10.1007/s11666-011-9701-6

Google Scholar

[18] O.P. Solonenko, A.V. Smirnov, and A.L. Sorokin, Interphase momentum and heat exchange in turbulent dust-laden plasma jet under continuous radial powder injection, Flow Dynamics: The Second International Conference on Flow Dynamics, 16-18 November, 2005, M. Takuyamaand S. Maruyama Ed., AIP Conference Proceedings, Vol. 32, Malville, New York, 2006, pp.375-382.

DOI: 10.1063/1.2204528

Google Scholar

[19] Dolmatov A.V., Gulyaev I.P., GulyaevP.Yu., Jordan V.I. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method // IOP Conference Series: Materials Science and Engineering, 2016, V. 110, 012058.

DOI: 10.1088/1757-899x/110/1/012058

Google Scholar

[20] Viktor Kuzmin, Igor Gulyaev, Dmitriy Sergachev, Sergey Vashchenko, ... Boris Palagushkin. Supersonic DC plasma torch for deposition of high-density wear-resistant coatings. MATERIALS TODAY: PROCEEDINGS. Volume 19, Part 5, Pages 2152-2156. Published 2020. Pages 2134-2138.

DOI: 10.1016/j.matpr.2019.07.230

Google Scholar

[21] Elena Kornienko, Alexander Smirnov, Victor Kuz'min. Researches Structure and Properties of Self-fluxing Coating, Obtained by Air-plasma Spraying. Applied Mechanics and Materials Vol. 698 (2015) pp.405-410 Submitted: 09.10.(2014).

DOI: 10.4028/www.scientific.net/amm.698.405

Google Scholar

[22] V. Ulianitsky, I. Batraev, D. Dudina, I. Smurov, Enhancing the properties of WC/Co detonation coatings using two-component fuels, Surface & Coatings Technology 318 (2017) 244–249.

DOI: 10.1016/j.surfcoat.2016.08.008

Google Scholar