[1]
A.K. Lakshminarayanan, S. Malarvizhi, and V. Balasubramanian, Developing friction stir welding window for AA2219 aluminium alloy. Trans. Nonferrous Met. Soc. China, (2011), 21(11), 2339-2347.
DOI: 10.1016/s1003-6326(11)61018-2
Google Scholar
[2]
G. Rambabu, D.B. Naik, C.V. Rao, K.S. Rao, and G.M. Reddy, Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defense Technology, (2015), 11(4), 330-337.
DOI: 10.1016/j.dt.2015.05.003
Google Scholar
[3]
K.S. Arora, S. Pandey, M. Schaper, and K. Kumar, Microstructure evolution during friction stir welding of aluminum alloy AA2219. J. Mater. Sci. Technol., (2010), 26(8), 747-743.
DOI: 10.1016/s1005-0302(10)60118-1
Google Scholar
[4]
H. Chen, K. Yan, T. Lin, S. Chen, C. Jiang, and Y. Zhao, The Investigation of Typical Welding Defects for 5456 Aluminum Alloy Friction Stir Welds, Materials Science and Engineering, (2006), 433(1-2), 64-69.
DOI: 10.1016/j.msea.2006.06.056
Google Scholar
[5]
E.F. Shultz, E.G. Cole, C.B. Smith, M.R. Zinn, N.J. Ferrier, and F.E. Pfefferkorn, Effect of Compliance and Travel Angle on Friction Stir Welding With Gaps, Journal of Manufacturing Science and Engineering, (2010), Vol. 132.
DOI: 10.1115/1.4001581
Google Scholar
[6]
A.H. Derazkola and A. Simchi, Experimental and thermomechanical analysis of friction stir welding of poly (methy methacrylate) sheets. Sci. Technol. Weld. Join., (2018), 23(3), 209-218.
DOI: 10.1080/13621718.2017.1364896
Google Scholar
[7]
R. Arash and M. Amir, Influence of machine parameters on material flow behavior during channeling in modified friction stir channelling, Int. J. Mater. Form., (2016), 9(1), 1-8.
DOI: 10.1007/s12289-014-1193-8
Google Scholar
[8]
M. Elyasi, D.H. Aghajani, and M. Hosseinzadeh, Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium, Proceedings of the Institution of Mechanical Engineers, Part B: J. Eng. Manuf., (2016), 230(7), 1234-1241.
DOI: 10.1177/0954405416645986
Google Scholar
[9]
A. Banik, B.S. Roy, J.D. Barma, and S.C. Saha, An experimental investigation of torque and force generation for varying tool tilt angles and their effects on microstructure and mechanical properties: Friction stir welding of AA 6061-T6., J. Manuf. Process., (2018), 31, 395-404.
DOI: 10.1016/j.jmapro.2017.11.030
Google Scholar
[10]
L. Long, G. Chen, S. Zhang, T. Liu, and Q. Shi, Finite element analysis of the tool tilt angle effect on the formation of friction stir welds, J. Manuf. Process., (2017), 30, 562-569.
DOI: 10.1016/j.jmapro.2017.10.023
Google Scholar
[11]
S.D. Meshram and G.M. Reddy, Influence of Tool Tilt Angle on Material Flow and Defect Generation in Friction Stir Welding of AA2219, (2018), Defense Science Journal, Vol. 68, No. 5, pp.512-518.
DOI: 10.14429/dsj.68.12027
Google Scholar
[12]
P.H. Shah and V.J. Badheka An Experimental Insight on the Selection of the Tool Tilt Angle for Friction Stir Welding of 7075 T651 Aluminum Alloys, Indian Journal of Science and Technology, (2016),Vol 9(S1).
DOI: 10.17485/ijst/2016/v9is1/102976
Google Scholar
[13]
K. Reshad Seighalani, M.K Besharati Givi, A.M. Nasiri, P. Bahemmat, Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium, (2010), J. Mater. Eng. Perform. 19, 955.
DOI: 10.1007/s11665-009-9582-8
Google Scholar
[14]
H.A.D. Hamid, A.A. Roslee, Study the Role of Friction Stir Welding Tilt Angle on Microstructure and Hardness, (2015), Appl. Mech. Mater., 799–800, 434–438.
DOI: 10.4028/www.scientific.net/amm.799-800.434
Google Scholar
[15]
C. Hamilton, S. Dymek, M. Kopyscianski, A. Weglowska, A. Pietras, Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding. Metals, (2018), 8, 324.
DOI: 10.3390/met8050324
Google Scholar
[16]
N.A. Slezkin Dynamics of a viscous incompressible fluid, Publishing house of Tekhniko-teoreticheskoi literatury - Moscow, (1955).
Google Scholar