[1]
C. Chen, B. Lv, H. Ma, D. Sun, F. Zhang, Wear behavior and the corresponding work hardening characteristics of Hadfield steel, Tribol. Int. 121 (2018) 389–399.
DOI: 10.1016/j.triboint.2018.01.044
Google Scholar
[2]
C. Chen, F.C. Zhang, F. Wang, H. Liu, B.D. Yu, Effect of NþCr alloying on the microstructures and tensile properties of Hadfield steel, Mater. Sci. Eng. 679 ( 2017) 95–103.
DOI: 10.1016/j.msea.2016.09.106
Google Scholar
[3]
D.V. Lychagin, A.V. Filippov, O.S. Novitskai, Y.I. Chumlyakov, E.A. Kolubaev, O.V. Sizova, Friction-induced slip band relief of Hadfield steel single crystal oriented for multiple slip deformation, Wear 374-375 (2017) 5–14.
DOI: 10.1016/j.wear.2016.12.028
Google Scholar
[4]
B. Hutchinson, N. Ridley, On dislocation accumulation and work hardening in Hadfield steel, Scripta Mater 55 (2006) 299–302.
DOI: 10.1016/j.scriptamat.2006.05.002
Google Scholar
[5]
C. Efstathiou, H. Sehitoglu, Strain hardening and heterogeneous deformation during twinning in Hadfield steel, Acta Materialia 58 (2010) 1479-1488.
DOI: 10.1016/j.actamat.2009.10.054
Google Scholar
[6]
L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri, and A. Sinatora, Roller crushers in iron mining, how does the degradation of Hadfield steel components occur?, Eng. Fail. Anal. 122 (2021) 105295.
DOI: 10.1016/j.engfailanal.2021.105295
Google Scholar
[7]
B. Hutchinson and N. Ridley, On dislocation accumulation and work hardening in Hadfield steel, Scr. Mater. 55 (2006) 299–302.
DOI: 10.1016/j.scriptamat.2006.05.002
Google Scholar
[8]
E.V. Sinitskii, A.A. Nefedev, A.A. Akhmetova, M.V. Ovchinnikova, I.B. Khrenov, D.A. Deriabin, Obzor rezultatov issledovanij napravlennyh na uluchshenie svojstv otlivok iz vysokomargancevoj stali, Teoriya i tekhnologia metallurgicheskogo proizvodstva 2 (2016) 45–57.
Google Scholar
[9]
D.T. Khodzhibergenov, K.T. Sherov, A.Zh. Kasenov, U.D. Khozhibergenova, Problemy vybora tekhnologii obrabotki novovnedrennykh materialov v proizvodstvo, Nauka i tekhnika Kazakhstana 2 (2018) 13-16.
Google Scholar
[10]
S. Masoud, F. Mansour, Hadfield manganese austenitic steel: A review of manufacturing processes and properties. Mater. Res. Express 6 (2019) 1065c2.
DOI: 10.1088/2053-1591/ab3ee3
Google Scholar
[11]
O. Çakir, Machining of Hadfield steel: an overview, 2nd International Conference on Advances in Mechanical Engineering (2016) 227 – 232.
Google Scholar
[12]
L. Ozler, A. Inan, C. Ozel, Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel, Int. J. of Machine Tools & Manufacture 41 (2001) 163-172.
DOI: 10.1016/s0890-6955(00)00077-8
Google Scholar
[13]
N. Tosun, L. Ozler, A study of tool life in hot machining using artificial neural network and regression analysis method, J. of Mater. Proc. Tech. 124 (2002) 99-104.
DOI: 10.1016/s0924-0136(02)00086-9
Google Scholar
[14]
Nikolaeva, E.P., Mashukov, A.N. Evaluation of Residual Stresses in High-Pressure Valve Seat Surfacing, Chemical and Petroleum Engineering 53 (2017) 459-463.
DOI: 10.1007/s10556-017-0363-1
Google Scholar
[15]
Nikolaeva, E., Mashukov, A. Evaluation of residual stresses in lock valve elements of petrochemical productions, MATEC Web of Conferences 129 (2017) 06006.
DOI: 10.1051/matecconf/201712906006
Google Scholar