Influence of High-Speed ECAP on the Structure and Properties of Copper and Copper Alloy of Cu-Cr System

Article Preview

Abstract:

The paper presents the results of a study of changes in the structure during equal-channel angular pressing (1 and 4 cycles) with a deformation rate of 320 mm/s. It was found that a significant structure refinement of copper M1 and Cu-1.1Cr alloy to an ultrafine-grained state occurs already after 1 ECAP cycle. A predominantly band structure with a transverse size of fragments of ~ 200-300 nm occurs. A specific feature of the structural state is alignment of low-and high-angle boundaries by dislocations and absence of unbonded dislocations in the body of fragments. After 1 cycle of ECAP, practically no dispersed particles are observed in the body of Cu-1.1Cr alloy grains, and the electrical conductivity does not change in this case. The maximum hardening of copper M1 is observed after 4 ECAP cycles-1320 MPa with an electrical conductivity of 89% IACS for Cu-1.1Cr alloy, the maximum hardening is achieved after 1 cycle of ECAP and aging at 450 °C for 1 h-1655 MPa with an electrical conductivity of 77% IACS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-350

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov. Phys. Metals Metallogr. 73(4), 373 (1992).

Google Scholar

[2] Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

DOI: 10.1557/jmr.2002.0002

Google Scholar

[3] A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V. I. Kopylov. Acta Mater. 50, 1639 (2002).

Google Scholar

[4] S. V. Dobatkin, D.V. Shangina, N.R. Bochvar, M. Janeček. Mater. Sci. Eng. A. 598, 288 (2014).

DOI: 10.1016/j.msea.2013.12.104

Google Scholar

[5] Zhilyaev A P, Morozova A, Cabrera J M, Kaibyshev R and Langdon T G 2017 J. Mater. Sci. 52305.

Google Scholar

[6] Sagaradze, V. V., & Shabashov, V. A. (2011). Anomalous diffusion phase transformations in steels upon severe cold deformation. The Physics of Metals and Metallography, 112(2), 146–164.

DOI: 10.1134/s0031918x11020256

Google Scholar

[7] Ivanisenko, J., Łojkowski, W., & Fecht, H. J. (2007). Stress- and Strain Induced Phase Transformations in Pearlitic Steels. Materials Science Forum, 539-543, 4681–4686.

DOI: 10.4028/www.scientific.net/msf.539-543.4681

Google Scholar

[8] Competition between precipitation and dissolution in Cu-Ag alloys under high pressure torsion. B.B. Straumal, V. Pontikis, A.R. Kilmametov, A.A. Mazilkin, S.V. Dobatkin, B. Baretzky. Acta Materialia 122 (2017) 60-71.

DOI: 10.1016/j.actamat.2016.09.024

Google Scholar

[9] Andrey Mazilkin, Boris Straumal, Askar Kilmametov, Petr Straumal and Brigitte Baretzky. Phase Transformations Induced by Severe Plastic Deformation. Materials Transactions, Vol. 60, No. 8 (2019) pp.1489-1499.

DOI: 10.2320/matertrans.mf201938

Google Scholar

[10] Faizov I., Raab G., Aksenov D. Contributions of various strengthening mechanisms to the flow onset stress in the ecap-processed Cu-Cr-Zr alloy. Key Engineering Materials. 2017. Т. 743 KEM. С. 197-202.

DOI: 10.4028/www.scientific.net/kem.743.197

Google Scholar

[11] I. A. Faizov, R. R. Mulyukov, D. A. Aksenov, S. N. Faizova, N. V. Zemlyakova, K. R. Cardoso, Yu. Zeng Dissolution of the second phase particles in the courseof the equal channel angular pressing of diluted Cu‑Cr‑Zr alloy. Letters on Materials 8 (1), 2018 p.110-114DOI: 10.22226/2410-3535-2018-1-110-114.

DOI: 10.22226/2410-3535-2018-1-110-114

Google Scholar

[12] I.A. Faizov, G.I. Raab, S.N. Faizova, N.G. Zaripov, D.A. Aksenov. The role of phase transitions in the evolution of dispersion parti-cles in chromium bronzes upon the equal channel angular pressing. Letters on materials 6 (2), 2016 pp.132-137.

DOI: 10.22226/2410-3535-2016-2-132-137

Google Scholar

[13] I.V. Khomskaya, V.I. Zeldovich, A.V. Makarov, A.E. Kheifets, N.Y. Frolova, E.V. Shorohov. Study of the structure, physico-mechanical properties and thermal stability of nanostructured copper and bronze processed by DCAP. Lett. Mater., 2013, 3(2) 150-154.

DOI: 10.22226/2410-3535-2013-2-150-154

Google Scholar

[14] Petrova, A. N., Brodova, I. G., Plekhov, O. A., Naimark, O. B., & Shorokhov, E. V. (2014). Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression. Technical Physics, 59(7), 989–996.

DOI: 10.1134/s1063784214070226

Google Scholar

[15] Effect of High Strain-Rate Deformation and Aging Temperatureon the Evolution of Structure, Microhardness, and Wear Resistance of Low-Alloyed Cu–Cr–Zr Alloy. A. E. Kheifets, I. V. Khomskaya, L. G. Korshunov, V. I. Zel'dovich, and N. Yu. Frolova. Physics of Metals and Metallography, 2018, Vol. 119, No. 4, p.402–411.

DOI: 10.1134/s0031918x18040075

Google Scholar

[16] A.Mishra, M.Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers. High-strain-rate response of ultra-fine-grained copper. Acta Materialia. Volume 56, Issue 12, July 2008, Pages 2770-2783.

DOI: 10.1016/j.actamat.2008.02.023

Google Scholar

[17] Mingya Zhang, Li Liu, Shan Liang, Jinghui Li. Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation. 3Metals and Materials International. Vol.:(0123456789)1.

DOI: 10.1007/s12540-019-00395-z

Google Scholar