Simulation of a Diamond Grain Interaction with Ceramics Using the Smoothed Particle Galerkin Method

Article Preview

Abstract:

The article presents the results of a single grain scratching simulation of a ceramic workpiece using the smoothed particle Galerkin method. The studies were carried out for 0.1-0.8 μm depths of cut, matching the ductile-brittle transition of ceramics grinding with minimum subsurface damage. The crack depth and scratching force were obtained for scratching speed of 40-140 m/s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-362

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Gu, W. Zhu, J. Lin, M. Lu, M. Kang, Subsurface Damage in Polishing Process of Silicon Carbide Ceramic, J. Materials 11 (2018).

DOI: 10.3390/ma11040506

Google Scholar

[2] X. Guo, R. Zhai, Y. Shi, R. Kang, Z. Jin, D. Guo, Study on influence of grinding depth and grain shape on grinding damage of K9 glass by SPH simulation, J. Advanced Manufacturing Technology 106 (2020) 333-343.

DOI: 10.1007/s00170-019-04649-3

Google Scholar

[3] J. Sun, Y. Wu, P. Zhou, S. Li, L. Zhang, K. Zhang, Simulation and experimental research on Si3N4 ceramic grinding based on different diamond grains, J. Advances in Mechanical Engineering 9 (2017) 1-12.

DOI: 10.1177/1687814017705596

Google Scholar

[4] Y. Liu, B. Li, Ch. Wu, L. Kong, Y. Zheng, Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism, J. Ceramics International 44 (2018) 12194-12203.

DOI: 10.1016/j.ceramint.2018.03.278

Google Scholar

[5] Y. Liu, B. Li, Ch. Wu, Y. Zheng, Simulation-based evaluation of surface micro-cracks and fracture toughness in high-speed grinding of silicon carbide ceramics, Int J Adv Manuf Technol 86 (2016) 799-808.

DOI: 10.1007/s00170-015-8218-4

Google Scholar

[6] A. Gouskov, S. Nikolaev, V. Kuts, F. Nizametdinov, E. Korovaitseva, S. Yuan, Analysis of displacement fields of particle shaping surface during nanoscale ductile mode cutting of brittle materials, Int J Adv Manuf Technol 95 (2018) 1911-1918.

DOI: 10.1007/s00170-017-1233-x

Google Scholar

[7] A. Mir, X. Luo, K. Cheng, A. Cox, Investigation of influence of tool rake angle in single point diamond turning of silicon, Int J Adv Manuf Technol 94 (2018) 2343-2355.

DOI: 10.1007/s00170-017-1021-7

Google Scholar

[8] A. Kurnenkov, A. Shurigin, V. Glebov, Finite element analysis of the dynamic interaction between a single abrasive grain and a glass surface, J. MATEC Web of Conferences 298 (2019).

DOI: 10.1051/matecconf/201929800068

Google Scholar

[9] C.T. Wu, T.Q. Bui, Y. Wu, T.L. Luo, M. Wang, C.C. Liao, P.Y. Chen, Y.S. Lai, Numerical and experimental validation of a particle Galerkin method for metal grinding simulation, J. Comput. Mech. 61 (2018) 1-19.

DOI: 10.1007/s00466-017-1456-6

Google Scholar

[10] C.T. Wu, Y. Wu, J. E. Crawford, J. M. Magallanes, Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method, Int J Impact Engineering 106 (2017) 1-17.

DOI: 10.1016/j.ijimpeng.2017.03.005

Google Scholar

[11] Y. Wu, C.T. Wu, Simulation of impact penetration and perforation of metal targets using the smoothed particle Galerkin method, J. Engineering Mechanics 144 (2018).

DOI: 10.1061/(asce)em.1943-7889.0001470

Google Scholar

[12] Y. Wu, C.T. Wu, W. Hu, Parametric and Convergence Studies of the Smoothed Particle Galerkin (SPG) Method in Semi-brittle and Ductile Material Failure Analyses, 15th International LS-DYNA Users Conference (2018).

Google Scholar

[13] Y. Wu, W. Hu, X. Pan, C.T. Wu, Recent Developments of Smoothed Particle Galerkin (SPG) Method for Joint Modeling, 16th International LS-DYNA Users Conference (2020).

Google Scholar

[14] C.T. Wu, T.Q. Bui, Y. Wu, T.-L. Luo, M. Wang, Ch.-Ch. Liao, P.-Y. Chen, Y.-Sh. Lai, Numerical and experimental validation of a particle Galerkin method for metal grinding simulation, J. Comput. Mech. 61 (2018) 365-383.

DOI: 10.1007/s00466-017-1456-6

Google Scholar