[1]
Y. Gu, W. Zhu, J. Lin, M. Lu, M. Kang, Subsurface Damage in Polishing Process of Silicon Carbide Ceramic, J. Materials 11 (2018).
DOI: 10.3390/ma11040506
Google Scholar
[2]
X. Guo, R. Zhai, Y. Shi, R. Kang, Z. Jin, D. Guo, Study on influence of grinding depth and grain shape on grinding damage of K9 glass by SPH simulation, J. Advanced Manufacturing Technology 106 (2020) 333-343.
DOI: 10.1007/s00170-019-04649-3
Google Scholar
[3]
J. Sun, Y. Wu, P. Zhou, S. Li, L. Zhang, K. Zhang, Simulation and experimental research on Si3N4 ceramic grinding based on different diamond grains, J. Advances in Mechanical Engineering 9 (2017) 1-12.
DOI: 10.1177/1687814017705596
Google Scholar
[4]
Y. Liu, B. Li, Ch. Wu, L. Kong, Y. Zheng, Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism, J. Ceramics International 44 (2018) 12194-12203.
DOI: 10.1016/j.ceramint.2018.03.278
Google Scholar
[5]
Y. Liu, B. Li, Ch. Wu, Y. Zheng, Simulation-based evaluation of surface micro-cracks and fracture toughness in high-speed grinding of silicon carbide ceramics, Int J Adv Manuf Technol 86 (2016) 799-808.
DOI: 10.1007/s00170-015-8218-4
Google Scholar
[6]
A. Gouskov, S. Nikolaev, V. Kuts, F. Nizametdinov, E. Korovaitseva, S. Yuan, Analysis of displacement fields of particle shaping surface during nanoscale ductile mode cutting of brittle materials, Int J Adv Manuf Technol 95 (2018) 1911-1918.
DOI: 10.1007/s00170-017-1233-x
Google Scholar
[7]
A. Mir, X. Luo, K. Cheng, A. Cox, Investigation of influence of tool rake angle in single point diamond turning of silicon, Int J Adv Manuf Technol 94 (2018) 2343-2355.
DOI: 10.1007/s00170-017-1021-7
Google Scholar
[8]
A. Kurnenkov, A. Shurigin, V. Glebov, Finite element analysis of the dynamic interaction between a single abrasive grain and a glass surface, J. MATEC Web of Conferences 298 (2019).
DOI: 10.1051/matecconf/201929800068
Google Scholar
[9]
C.T. Wu, T.Q. Bui, Y. Wu, T.L. Luo, M. Wang, C.C. Liao, P.Y. Chen, Y.S. Lai, Numerical and experimental validation of a particle Galerkin method for metal grinding simulation, J. Comput. Mech. 61 (2018) 1-19.
DOI: 10.1007/s00466-017-1456-6
Google Scholar
[10]
C.T. Wu, Y. Wu, J. E. Crawford, J. M. Magallanes, Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method, Int J Impact Engineering 106 (2017) 1-17.
DOI: 10.1016/j.ijimpeng.2017.03.005
Google Scholar
[11]
Y. Wu, C.T. Wu, Simulation of impact penetration and perforation of metal targets using the smoothed particle Galerkin method, J. Engineering Mechanics 144 (2018).
DOI: 10.1061/(asce)em.1943-7889.0001470
Google Scholar
[12]
Y. Wu, C.T. Wu, W. Hu, Parametric and Convergence Studies of the Smoothed Particle Galerkin (SPG) Method in Semi-brittle and Ductile Material Failure Analyses, 15th International LS-DYNA Users Conference (2018).
Google Scholar
[13]
Y. Wu, W. Hu, X. Pan, C.T. Wu, Recent Developments of Smoothed Particle Galerkin (SPG) Method for Joint Modeling, 16th International LS-DYNA Users Conference (2020).
Google Scholar
[14]
C.T. Wu, T.Q. Bui, Y. Wu, T.-L. Luo, M. Wang, Ch.-Ch. Liao, P.-Y. Chen, Y.-Sh. Lai, Numerical and experimental validation of a particle Galerkin method for metal grinding simulation, J. Comput. Mech. 61 (2018) 365-383.
DOI: 10.1007/s00466-017-1456-6
Google Scholar