Modernization of Electrode Composite Material Based on Copper Powder for Electrical Discharge Machining of High-Strength Alloys

Article Preview

Abstract:

As a result of implemented modernization of known electrode composite material based on Cu-3% wt BN copper powder successfully used for electrical discharge machining of high-strength alloys, composite material (Cu - 3% wt BN) – 0.5 % wt Al – 0.25 % wt in the form of high-density long thin-wall plates for operations of electrical discharge cutting and piercing of hard-to-machine materials was obtained. The new material was obtained with the use of the method of reactionary mechanical alloying of initial powder components in the attritor. Tool electrodes made of the new material during electrical discharge piercing of rectangular holes in titanium alloy sheets ensure a 1.6 times higher machining rate comparing to tool electrodes made of the Cu-3% wt BN prototype material. After replacement of rolled copper in tool electrodes with the new composite material the machining rate will increase 4.1 times. The tool electrodes made of this material have significantly lower electrical discharge wear comparing to the wear of tool electrodes made of the prototype material and rolled copper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

472-477

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Peters,  J. Kumpfert, C. Leyens, Titanlegierungen in der Luft- und Raumfahrt, in: M. Peters, C. Leyens (Eds.), Titan und Titanlegierungen, Wiley-VCH Verlag, Weinheim, 2002, pp.351-368.

DOI: 10.1002/9783527611089.ch13

Google Scholar

[2] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A. 213 (1–2) (1996) 103-114.

DOI: 10.1016/0921-5093(96)10233-1

Google Scholar

[3] O. Schauerte, Titan im Fahrzeugbau, in: M. Peters, C. Leyens (Eds.), Titan und Titanlegierungen, Wiley-VCH Verlag, Weinheim, 2002, pp.477-493.

DOI: 10.1002/9783527611089.ch18

Google Scholar

[4] M. Peters, C. Leyens, Einsatz von Titan außerhalb der Luft- und Raumfahrt, in: M. Peters, C. Leyens (Eds.), Titan und Titanlegierungen, Wiley-VCH Verlag, Weinheim, 2002, pp.407-430.

DOI: 10.1002/9783527611089.ch15

Google Scholar

[5] N. R. Muktinutalapati, Materials for Gas Turbines – An Overview, in: E. Benini (Ed.), Advances in Gas Turbine Technology, Intechopen, London, 2011, pp.13-314.

Google Scholar

[6] S.A. Niknam, R. Khettabi, V. Songmene, Machinability and Machining of Titanium Alloys: A Review, in: J.P. Davim (Ed.), Machining of Titanium Alloys, Springer-Verlag, Berlin Heidelberg, 2014, pp.1-30.

DOI: 10.1007/978-3-662-43902-9_1

Google Scholar

[7] M.L. Levit, O.V. Padalko, Materials and methods for the manufacture of shaped electrodes-tools of electroerosive copying and sewing machines, Research Institute of Mechanical Engineering, Moscow, (1975).

Google Scholar

[8] T. Thankachan, К. S. Prakash, M. Loganathan, WEDM process parameter optimization of FSPed copper-BN composites, Materials and Manufacturing Processes, 33 (3) (2017) 350-358.

DOI: 10.1080/10426914.2017.1339311

Google Scholar

[9] S. Chen, Yu. Bi, H. Zhang, Effect of BN fraction on the mechanical and tribological properties of Cu alloy/BN self-lubricating sleeves, J. of Composite Materials 49 (30) (2015)  3715-3725.

DOI: 10.1177/0021998314568330

Google Scholar

[10] E.P. Shalunov, A.L. Matrosov, Ya.M. Lipatov and V.Ya. Berent, RU Patent 2,195,511. (2001).

Google Scholar

[11] E. Shalunov, A. Matrosov, L. Chen, Development, production and application of DISCOM® copper nanocomposites as highly resource electrode and electric contact materials, in: Proc. of the Euro Inter. Powder Metallurgy Congress and Exhibition (Euro PM 2008), EPMA, Mannheim, 2008, pp.33-38.

Google Scholar

[12] E.P. Shalunov, RU Patent 2,116,370. (1997).

Google Scholar

[13] J.I. Bestolkov, A.V. Zyryanov, A.G. Kovrigin and P.B. Kuprin, SU Patent 170,851.(1989).

Google Scholar