[1]
A.L. Leão, F.R.M. Teixeira, P.C. Ferrão Production of Reinforced Composites with Natural Fibers for Industrial Applications – Extrusion and Injection WPC, Molecular Crystals and Liquid Crystals. 484(1), (2008). 157/[523]–166/[532].
DOI: 10.1080/15421400801904393
Google Scholar
[2]
A.M. Kuzmin, Influence of compatibilizator on the operational and technological properties of thermoplastic composites filled with fine barley straw, Lecture Notes in Civil Engineering, 95, (2021) 325-332.
DOI: 10.1007/978-3-030-54652-6_49
Google Scholar
[3]
A.M. Kuzmin, E.A. Radaikina Technology development for the production of thermoplastic composites with agricultural fillers by compounding method on co-directional twin screw extruder, IOP Conference Series: Materials Science and Engineering. 873, 1, (2020) 012022.
DOI: 10.1088/1757-899x/873/1/012022
Google Scholar
[4]
A. Hejna, Potential applications of by-products from the coffee industry in polymer technology – Current state and perspectives, Waste Management. 121, (2021) 296-330.
DOI: 10.1016/j.wasman.2020.12.018
Google Scholar
[5]
A. Hejna, M. Barczewski, J. Andrzejewski, P. Kosmela, A. Piasecki, M. Szostak, T. Kuang, Rotational molding of linear low-density polyethylene composites filled with wheat bran, Polymers. 12, 5, (2020) 1004.
DOI: 10.3390/polym12051004
Google Scholar
[6]
J. Korol, A. Hejna, D. Burchart-Korol, J. Wachowicz, Comparative analysis of carbon, ecological, and water footprints of polypropylene-based composites filled with cotton, jute and kenaf fibers, Materials. 13, 16, (2020) 3541.
DOI: 10.3390/ma13163541
Google Scholar
[7]
N. Ayrilmis, T. Güleç, E. Peşman, A. Kaymakci, Potential use of cotton dust as filler in the production of thermoplastic composites, Journal of Composite Materials. 51, 30, (2017) 4147-4155.
DOI: 10.1177/0021998317698750
Google Scholar
[8]
S.S. Raj, T.K. Kannan, R. Rajasekar, Effect of wood particulate size on the mechanical properties of PLA biocomposite, Pigment and Resin Technology. 49(6), (2020) 465-472.
DOI: 10.1108/prt-12-2019-0117
Google Scholar
[9]
C. Pereira, L. Pisanu, J. Viana, J. Azevedo, T. Almeida, M. Fook, R. Wellen, E. Canedo, Heterophasic polypropylene and wood flour composites: Processing and properties, Materials Research Express. 6, 8, (2019) 085321.
DOI: 10.1088/2053-1591/ab1fc6
Google Scholar
[10]
B.D.S. Machado, V.S. Martins, L. Pisanu, M.L. Ferreira Nascimento, Transition characteristics of Brazilian vegetable fibers investigated by heating microscopy, Journal of Natural Fibers. 17, 3, (2020) 450-462.
DOI: 10.1080/15440478.2018.1500337
Google Scholar
[11]
K. Mazur, P.Jakubowska, P. Romańska, S. Kuciel, Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications, Composites Part B: Engineering. 202, (2020) 108399.
DOI: 10.1016/j.compositesb.2020.108399
Google Scholar
[12]
L. Fabian, O. Wünsch Numerical simulation of flow processes of wood-polymer in extrusion dies, Proceedings in Applied Mathematics and Mechanics. (2020).
Google Scholar
[13]
K. Wilczyński, K. Buziak, A. Lewandowski, A. Nastaj and K.J. Wilczyński Rheological Basics for Modeling of Extrusion Process of Wood Polymer Composites, Polymers. 13, 622 (2021).
DOI: 10.3390/polym13040622
Google Scholar
[14]
K.J. Wilczyński, K. Buziak A Computer Model of Starve Fed Single Screw Extrusion of Wood Plastic Composites, Polymers. 13, 1252 (2021).
DOI: 10.3390/polym13081252
Google Scholar
[15]
K.Wilczyński, A.Nastaj, A.Lewandowski, K.J Wilczyński, K. Buziak, Experimental Study for Extrusion of Polypropylene/Wood Flour Composites, International Polymer Processing. 30(1), (2015) 113–120.
DOI: 10.3139/217.3007
Google Scholar
[16]
G. Gangjian Density reduction behaviors and cell morphology in extrusion of LLDPE/ wood fiber composites with physical and chemical blowing agents, Journal of Applied Polymer Science. 137(26):48829 (2019).
DOI: 10.1002/app.48829
Google Scholar
[17]
J.D.V. Barbos, J.B. Azevedo, P. da S.M. Cardoso, F. da C. Garcia Filho, T.G. Río Development and characterization of WPCs produced with high amount of wood residue, Journal of Materials Research and Technology. 9(5), (2020) 9684–9690.
DOI: 10.1016/j.jmrt.2020.06.073
Google Scholar
[18]
G.N. Kouzilos, A.P. Markopoulos, D.E. Manolakos Manufacturing and Modeling of an Extrusion Die Spider Head for the Production of HDPE Tubes, Journal of Manufacturing Technology Research. 6(1-2):1-15 (2015).
Google Scholar
[19]
A. Koutelieris, K. Kioupi, O. Haralampous, K. Kitsakis, N. Vaxevanidis, J. Kechagias, Simulation of extrusion of high density polyethylene tubes, MATEC Web of Conferences. 112, (2017) 04004.
DOI: 10.1051/matecconf/201711204004
Google Scholar
[20]
K. Xiao, C. Tzoganakis, An experimental study of single-screw extrusion of HDPE-wood composites, Advances in Polymer Technology. 29(3) (2010) 197–218.
DOI: 10.1002/adv.20190
Google Scholar
[21]
H. Fu, M. Dun, B. Chen, Z. Zhou, H. Wang, W. Wang, Y. Xie, Q. Wang, Compression rheological behavior of ultrahighly filled wood flour-polyethylene composites, Composites Part B: Engineering. 215, (2021) 108766.
DOI: 10.1016/j.compositesb.2021.108766
Google Scholar
[22]
W. Wang, L. Liu, N. Ding, R. Zhang, J.Yu, Mechanical and thermal behavior analysis of wood–polypropylene composites, Textile Research Journal. 91, 3-4, (2021) 347-357.
DOI: 10.1177/0040517520944246
Google Scholar
[23]
N. Bouhamed, S. Souissi, P. Marechal, M.B. Amar, O. Lenoir, R. Leger, A. Bergeret, Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour, Mechanics of Materials. 148, (2020) 103445.
DOI: 10.1016/j.mechmat.2020.103445
Google Scholar