[1]
Moosburger-Will, Judith, et al. Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: influence of carbon fiber surface chemistry. Composite Interfaces 24.7 (2017) 691-710.
DOI: 10.1080/09276440.2017.1267513
Google Scholar
[2]
Drzal, L. T., N. Sugiura, and D. Hook. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices. Composite Interfaces 4.5 (1996) 337-354.
DOI: 10.1163/156855497x00073
Google Scholar
[3]
Bauer, Matthias, et al. Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: Quantification of surface functional groups by gas-phase derivatization. Applied Surface Science 506 (2020) 144947.
DOI: 10.1016/j.apsusc.2019.144947
Google Scholar
[4]
Park, Soo-Jin, et al. A study of atmospheric plasma treatment on surface energetics of carbon fibers. Bulletin of the Korean Chemical Society 31.2 (2010) 335-338.
DOI: 10.5012/bkcs.2010.31.02.335
Google Scholar
[5]
Hartney, M. A., D. W. Hess, and D. S. Soane. Oxygen plasma etching for resist stripping and multilayer lithography. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 7.1 (1989) 1-13.
DOI: 10.1116/1.584440
Google Scholar
[6]
Ho, Kingsley KC, et al. Continuous atmospheric plasma fluorination of carbon fibres. Composites Part A: Applied Science and Manufacturing 39.2 (2008) 364-373.
DOI: 10.1016/j.compositesa.2007.10.008
Google Scholar
[7]
Ho, Kingsley KC, et al. Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers. Composites science and technology 67.13 (2007) 2699-2706.
DOI: 10.1016/j.compscitech.2007.02.012
Google Scholar
[8]
Meng, Linghui, et al. The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers. Applied surface science 273 (2013) 167-172. https://doi.org/10.1016/j.apsusc.2013.02.007.
DOI: 10.1016/j.apsusc.2013.02.007
Google Scholar
[9]
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon 48 (2010) 788–796.
DOI: 10.1016/j.carbon.2009.10.028
Google Scholar
[10]
Gómez-Serrano, Vicente, et al. Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-ir. Fuel 73.3 (1994) 387-395.
DOI: 10.1016/0016-2361(94)90092-2
Google Scholar
[11]
Qian, Xin, et al. Effect of carbon fiber surface chemistry on the interfacial properties of carbon fibers/epoxy resin composites. Journal of Reinforced Plastics and Composites 32.6 (2013) 393-401.
DOI: 10.1177/0731684412468369
Google Scholar
[12]
J. Gulyás, E. Földes, A. Lázár, B. Pukánszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion, Composites Part A: Applied Science and Manufacturing, 32 (2001) 353-360. https://doi.org/10.1016/S1359-835X(00)00123-8.
DOI: 10.1016/s1359-835x(00)00123-8
Google Scholar
[13]
J. Zhang, Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites, Ecole Centrale Paris, (2012).
Google Scholar
[14]
Cao, Xiaojian, and Jialiang Li. Enhanced interfacial property of carbon fiber reinforced epoxy composite based on carbon fiber treated by supercritical water/nitrate system. Journal of Composite Materials (2021) 00219983211015421.
DOI: 10.1177/00219983211015421
Google Scholar
[15]
Liu, Jie, et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Materials Chemistry and Physics 122.2-3 (2010) 548-555.
DOI: 10.1016/j.matchemphys.2010.03.045
Google Scholar
[16]
Liu, Jie, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4) 2C2O4· H2O aqueous compound solution. Applied surface science 256.21 (2010) 6199-6204.
DOI: 10.1016/j.apsusc.2010.03.141
Google Scholar
[17]
Qian, Xin, et al. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation. Applied Surface Science 259 (2012) 238-244.
DOI: 10.1016/j.apsusc.2012.07.025
Google Scholar
[18]
Ishida, Hatsuo. Interfaces in polymer, ceramic, and metal matrix composites; Proceedings of the Second International Conference on Composite Interfaces (ICCI-II), Cleveland, OH, June 13-17, 1988. (1988).
Google Scholar
[19]
Li, Zhaorui, et al. Influence of surface properties on the interfacial adhesion in carbon fiber/epoxy composites. Surface and interface analysis 46.1 (2014) 16-23.
DOI: 10.1002/sia.5340
Google Scholar
[20]
Sharma, Mohit, et al. Carbon fiber surfaces and composite interphases. Composites Science and Technology 102 (2014): 35-50.
Google Scholar
[21]
Ma, Y. J., J. L. Wang, and X. P. Cai. The effect of electrolyte on surface composite and microstructure of carbon fiber by electrochemical treatment. Int. J. Electrochem. Sci 8.2 (2013) 2806-2815.
Google Scholar
[22]
S. Galyshev, E. Postnova, Electrochemical Deposition of SiO2-Coatings on a Carbon Fiber, Fibers 33 (2021) 1-15. https://doi.org/10.3390/fib9050033.
DOI: 10.3390/fib9050033
Google Scholar