[1]
V.A. Bocharov, V.A. Ignatkina Technology of mineral processing: in 2 volumes. Vol. 1: Mineral and raw materials base of useful minerals, Beneficiation of non-ferrous metal ores, ores and placers of rare metals, Ore and Metals. 2007, 472 p.
DOI: 10.3103/s1067821212040025
Google Scholar
[2]
J. Rybak, Y. Tyulyaeva, Ch. Kongar-Syuryun, A. Khayrutdinov, I. Akinshin, Geomechanical substantiation of parameters of technology for mining salt deposits with a backfill, Mining Science. 28 (2021) 19-32.
DOI: 10.37190/msc202802
Google Scholar
[3]
A. Khayrutdinov, Ch. Kongar-Syuryun, T. Kowalik, Y. Tyulyaeva, Stress-strain behavior control in rock mass using different-stregth backfill, Mining Informational and Analytical Bulletin. 10 (2020) 42-55.
DOI: 10.25018/0236-1493-2020-10-0-42-55
Google Scholar
[4]
M. Khayrutdinov, Ch. Kongar-Syuryun, A. Khayrutdinov, Y. Tyulyaeva, Improving safety when extracting water-soluble ores by optimizing the parameters of the backfill mass, Bezopasnost' Truda v Promyshlennosti. 1 (2021) 53-59.
DOI: 10.24000/0409-2961-2021-1-53-59
Google Scholar
[5]
Ch. Kongar-Syuryun, A. Ivannikov, Y. Tyulyaeva, A. Khayrutdinov, Geotechnology using composite materials from man-made waste is a paradigm of sustainable development, Materials Today: Proceedings. 38 (2021) 2078-2082.
DOI: 10.1016/j.matpr.2020.10.145
Google Scholar
[6]
T. Kowalik, A. Ubysz, Waste basalt fibers as an alternative component of fiberconcrete, Materials Today: Proceedings. 38 (2021) 2055-2058. doi.org/10.1016/j.matpr.2020.10.140.
DOI: 10.1016/j.matpr.2020.10.140
Google Scholar
[7]
M. Khayrutdinov, Ch. Kongar-Syuryun, Yu. Tyulyaeva, A. Khayrutdinov, Cementless backfill mixtures based on water-soluble manmade waste, Bulletin of the Tomsk Polytechnic University, Geo Аssets Engineering. 331 (2020) 30–36.
DOI: 10.3390/min11070739
Google Scholar
[8]
A.A. Abramov, Tekhnologiya obogashcheniya rud tsvetnykh metallov, Nedra, Moskva, (1983).
Google Scholar
[9]
R. Herrera-Urbina, J.S. Hanson, G.H. Harris, D.W. Fuerstenau, Principles and practice of sulphide mineral flotation, in: Sulphide Depos. Orig. Process, (1990).
DOI: 10.1007/978-94-009-0809-3_6
Google Scholar
[10]
K.A. Melekhina, P.P. Ananyev, A.V. Plotnikova, A.S. Timofeev, S.A. Shestak, Modeling and optimization of complex ore pretreatment by disintegration in autogenous mills, Mining Informational and Analytical Bulletin. 2020(10) (2020) 95–105.
DOI: 10.25018/0236-1493-2020-10-0-95-105
Google Scholar
[11]
A. Ivannikov, A. Chumakov, V. Prischepov, K. Melekhina, Express determination of the grain size of nickel-containing minerals in ore material, Materials Today: Proceedings. 38 (2020), 2059-2062.
DOI: 10.1016/j.matpr.2020.10.141
Google Scholar
[12]
V.V. Dmitrieva, P.E. Sizin, I.F. Avkhadiev, The use of modern software and hardware systems for the automation of conveyor lines, Mining Informational and Analytical Bulletin. 2 (2021) 150-163.
DOI: 10.25018/0236-1493-2021-2-0-150-163
Google Scholar
[13]
V.V. Dmitrieva, P.E. Sizin, Correlation analysis and methods of modeling random cargo traffic entering the collecting conveyor, Mining Informational and Analytical Bulletin. 10 (2018) 145-155.
DOI: 10.25018/0236-1493-2018-10-0-145-155
Google Scholar
[14]
J. Rybak, C. Kongar-Syuryun, Y. Tyulyaeva, A.M. Khayrutdinov, Creation of backfill materials based on industrial waste, Minerals. 11(7) (2021) 739.
DOI: 10.3390/min11070739
Google Scholar
[15]
M.G. Rakhutin, P.F. Boyko, Ways to improve assessment methods of the main characteristics of grinding balls, Russian Coal Journal. 12 (2017) 49-52.
DOI: 10.18796/0041-5790-2017-12-49-52
Google Scholar
[16]
P.F. Boyko, E.M. Titievsky, V.A. Timiryazev, V.U. Mnatsakanyan, M.Z. Khostikoev, Provision of operational life-time period of crushers liners by applying new technologies of their manufacturing and wear-out diagnosing, Equipment and technologies for oil and gas complex. 5 (2019) 42-47.
DOI: 10.33285/1999-6934-2019-5(113)-42-47
Google Scholar
[17]
A. Myaskov, I.Temkin, S. Deryabin, D. Marinova, Factors and Objectives of Sustainable Development at the Implementation of Digital Technologies and Automated Systems in the Mining Industry, E3S Web of Conferences. 174 (2020), 04023.
DOI: 10.1051/e3sconf/202017404023
Google Scholar
[18]
B.T. Kien, S.S. Kubrin, K.P. Aung, Effect of frequency converters on power network performance in mines, Mining Informational and Analytical Bulletin. 2018(2) (2018) 20–26.
Google Scholar
[19]
T. Napier-Munn, B.A. Wills, Wills' Mineral Processing Technology, (2005).
DOI: 10.1016/b978-075064450-1/50007-2
Google Scholar
[20]
N. Sehlotho, Z. Sindane, M. Bryson, L. Lindvelt, Flowsheet development for selective Cu-Pb-Zn recovery at Rosh Pinah concentrator, Miner. Eng. (2018).
DOI: 10.1016/j.mineng.2018.03.001
Google Scholar
[21]
B.E. Goryachev, K.Z. Ya, A.A. Nikolaev, The effect of copper, zinc and iron sulphates on sphalerite flotation by sulphydryl collectors, Tsvetnye Metally, 3 (2017) 7–12.
DOI: 10.17580/tsm.2017.03.01
Google Scholar
[22]
B.E. Goryachev, K.Z. Ya, A.A. Nikolaev, Yu.N. Polyakova, Peculiarities of sphalerite flotation by potassium butyl xanthate and sodium dithiophosphate in lime medium, Tsvetnye Metally. 2015(11) (2015) 14–19.
DOI: 10.17580/tsm.2015.11.02
Google Scholar
[23]
D.R. Nagaraj, S. Ravishankar, Flotation Reagents-A critical Overview from an Industry Perspective., in: Froth Flotat. A Century Innov., (2007).
Google Scholar
[24]
C. Marion, A. Jordens, R. Li, M. Rudolph, K.E. Waters, An evaluation of hydroxamate collectors for malachite flotation, Separation and Purification Technology. 183 (2017) 258-269.
DOI: 10.1016/j.seppur.2017.02.056
Google Scholar
[25]
B.E. Goryachev, A.A. Nikolaev, Principles of kinetic ion, modeling of adsorptive collector layer at the surface of nonferrous heavy metal sulfides, Journal of Mining Science. 49 (2013) 499-506.
DOI: 10.1134/s1062739149030180
Google Scholar
[26]
A.P. Chandra, A.R. Gerson, A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite, Adv. Colloid Interface Sci. 145(1-2) (2009) 97-100.
DOI: 10.1016/j.cis.2008.09.001
Google Scholar
[27]
A.A. Nikolaev, S. Thu, B.E. Goryachev, Upon bubble-mineral attachment kinetics with Sphalerite under the conditions of application of Thiol collectors and mixtures of these collectors, Obogashchenie Rud. 5 (2016).
DOI: 10.17580/or.2016.05.03
Google Scholar
[28]
J. Liu, Y. Wang, D. Luo, Y. Zeng, Use of ZnSO4 and SDD mixture as sphalerite depressant in copper flotation, Minerals Engineering. 1 (2018) 31-38.
DOI: 10.1016/j.mineng.2018.03.003
Google Scholar
[29]
B. Yang, X. Tong, Z. Lan, Y. Cui, X. Xie, Influence of the interaction between sphalerite and pyrite on the copper activation of sphalerite, Minerals. 8(1) (2018) 16.
DOI: 10.3390/min8010016
Google Scholar