[1]
Y. Lian, C. Mu, L. Wang, B. Yao, J. Deng, S. Lei, Numerical simulation and experimental investigation on friction and wear behaviour of micro-textured cemented carbide in dry sliding against TC4 titanium alloy balls, International Journal of Refractory Metals and Hard Materials, 73, pp.121-131 (2018).
DOI: 10.1016/j.ijrmhm.2018.02.006
Google Scholar
[2]
M. Vakili-Azghandi, M. Roknian, J.A. Szpunar, S.M. Mousavizade, Surface modification of pure titanium via friction stir processing: Microstructure evolution and dry sliding wear performance, Journal of Alloys and Compounds, 816, 152557, (2020).
DOI: 10.1016/j.jallcom.2019.152557
Google Scholar
[3]
A. S. Siju, K.K. Gajrani, S.S. Joshi, Dual textured carbide tools for dry machining of titanium alloys, International Journal of Refractory Metals and Hard Materials, 94, 105403, (2021).
DOI: 10.1016/j.ijrmhm.2020.105403
Google Scholar
[4]
X. Liang, Z. Liu, G. Yao, B. Wang, X. Ren, Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V, Tribology International, 135, pp.130-142, (2019).
DOI: 10.1016/j.triboint.2019.02.049
Google Scholar
[5]
M. Younas, S. Husain, I. Jaffery, A. Khan, M. Khan, Development and analysis of tool wear and energy onsumption maps for turning of titanium alloy (Ti6Al4V), Journal of Manufacturing Processes, 62, pp.613-622, (2921).
DOI: 10.1016/j.jmapro.2020.12.060
Google Scholar
[6]
S. Deenoi, S. Dechjarern, Effect of Cryogenic and Coating treatments on Wear and Friction between Titanium Alloy and UHMWPE for Knee Implants, Materials Today: Proceedings, 17(4), pp.1939-1948, (2019).
DOI: 10.1016/j.matpr.2019.06.237
Google Scholar
[7]
H. Ghahramanzadeh Asl, Investigation of friction and wear performance on oxidized Ti6Al4V alloy at different temperatures by plasma oxidation method under ambient air and vacuum conditions, Vacuum, 180, 109578, (2020).
DOI: 10.1016/j.vacuum.2020.109578
Google Scholar
[8]
J. Ma, D. Luo, X. Liao, Z. Zhang, Y. Huang, J. Lu, Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning, Measurement, 173, 108554, (2021).
DOI: 10.1016/j.measurement.2020.108554
Google Scholar
[9]
P. Chen, J. Tong, J. Zhao, Z. Zhang, B. Zhao, A study of the surface microstructure and tool wear of titanium alloys fter ultrasonic longitudinal-torsional milling, Journal of Manufacturing Processes, 53, pp.1-11, (2020).
DOI: 10.1016/j.jmapro.2020.01.040
Google Scholar
[10]
G. Wang, S. Wang, X. Yang, X. Yu, D. Wen, Z. Chang, M. Zhang, Fretting wear and mechanical properties of surface-nanostructural titanium alloy bone plate, Surface and Coatings Technology, 405, 126512, (2021).
DOI: 10.1016/j.surfcoat.2020.126512
Google Scholar
[11]
H. Zhou, X. Shi, G. Lu, Y. Chen, Z. Yang, C. Wu, Y. Xue, A. Mohamed, M. Ibrahim, Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles, Surface and Coatings Technology, 387, 125552, (2020).
DOI: 10.1016/j.surfcoat.2020.125552
Google Scholar
[12]
C. Bonnet, J. Rech, G. Poulachon, Characterization of friction coefficient for simulating drilling contact for titanium TiAl6V4 alloy, CIRP Journal of Manufacturing Science and Technology, 29(A), pp.130-137, (2020).
DOI: 10.1016/j.cirpj.2020.03.003
Google Scholar
[13]
D. Kato, G. Palot, A.Sugihara, M. Aotsuka, Research and Development of a high Performance Axial Compressor. Engineering Review, 47(1), p.49 – 56, (2014).
Google Scholar
[14]
V. Alisin, M. Borik, A. Kulebyakin, E. Lomonova, I. Suvorova, Analysis of surface structure of zirconia crystals in case of friction against steel, MATEC Web of Conferences 329, 02008, (2020).
DOI: 10.1051/matecconf/202032902008
Google Scholar