[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
L.S. Zhang, G.L. Ma, L.C. Fu, J.Y. Tian, Recent Progress in High-Entropy Alloys, Adv. Mater. Res. 631–632 (2013) 227–232.
DOI: 10.4028/www.scientific.net/amr.631-632.227
Google Scholar
[3]
F. Průša, M. Cabibbo, A. Šenková, V. Kučera, Z. Veselka, A. Školáková, D. Vojtěch, J. Cibulková, J. Čapek, High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: Properties and strengthening mechanism, J. Alloys Compd. 835 (2020).
DOI: 10.1016/j.jallcom.2020.155308
Google Scholar
[4]
S.J. Mary, R. Nagalakshmi, R. Epshiba, High Entropy Alloys Properties and Its Applications – an Overview, High Entropy Alloy. Sect. B-Review Eur. Chem. Bull. 4 (2015) 279–284.
Google Scholar
[5]
L. Cao, X. Wang, Y. Wang, L. Zhang, Y. Yang, F. Liu, Y. Cui, Microstructural evolution, phase formation and mechanical properties of multi-component AlCoCrFeNix alloys, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–11.
DOI: 10.1007/s00339-019-2959-0
Google Scholar
[6]
A. Vallimanalan, S.P.K. Babu, S. Muthukumaran, M. Murali, R. Mahendran, V. Gaurav, S. Manivannan, Synthesis, characterisation and erosion behaviour of AlCoCrMoNi high entropy alloy coating, Mater. Res. Express. 6 (2019).
DOI: 10.1088/2053-1591/ab4477
Google Scholar
[7]
M.C. Gao, P.K. Liaw, J.W. Yeh, Y. Zhang, High-entropy alloys: Fundamentals and applications, (2016).
Google Scholar
[8]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A. 375–377 (2004) 213–218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[9]
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Wang, Z.F. Zhang, Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 806 (2019) 992–998.
DOI: 10.1016/j.jallcom.2019.07.357
Google Scholar
[10]
C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, L. Wang, Microstructure and mechanical properties of AlxSi0.2CrFeCoNiCu1−x high-entropy alloys, Mater. Des. 90 (2016) 601–609.
DOI: 10.1016/j.matdes.2015.11.013
Google Scholar
[11]
T. Stasiak, S.N. Kumaran, M. Touzin, F. Béclin, C. Cordier, Novel Multicomponent Powders from the AlCrFeMnMo Family Synthesized by Mechanical Alloying, Adv. Eng. Mater. 21 (2019).
DOI: 10.1002/adem.201900808
Google Scholar
[12]
V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis, Surf. Coatings Technol. 204 (2010) 1989–(1992).
DOI: 10.1016/j.surfcoat.2009.12.006
Google Scholar
[13]
P. Chen, C. Yang, S. Li, M.M. Attallah, M. Yan, In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion, Mater. Des. 194 (2020) 108966.
DOI: 10.1016/j.matdes.2020.108966
Google Scholar
[14]
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, Elemental segregation in an AlCoCrFeNi high-entropy alloy – A comparison between selective laser melting and induction melting, J. Alloys Compd. 784 (2019) 195–203.
DOI: 10.1016/j.jallcom.2018.12.267
Google Scholar
[15]
J.W. Pegues, M.A. Melia, M.A. Rodriguez, T.F. Babuska, B. Gould, N. Argibay, A. Greco, A.B. Kustas, In situ synchrotron X-ray imaging and mechanical properties characterization of additively manufactured high-entropy alloy composites, J. Alloys Compd. 876 (2021) 159505.
DOI: 10.1016/j.jallcom.2021.159505
Google Scholar
[16]
H.R. Sistla, J.W. Newkirk, F. Frank Liou, Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2-x (x=0.3, 1) high entropy alloys, Mater. Des. 81 (2015) 113–121.
DOI: 10.1016/j.matdes.2015.05.027
Google Scholar
[17]
Y. Geng, S.V. Konovalov, X. Chen, Research Status and Application of the High-Entropy and Traditional Alloys Fabricated via the Laser Cladding, Usp. Fiz. Met. 21 (2020) 26–45.
DOI: 10.15407/ufm.21.01.026
Google Scholar
[18]
M. Cagirici, P. Wang, F.L. Ng, M.L.S. Nai, J. Ding, J. Wei, Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying, J. Mater. Sci. Technol. 94 (2021) 53–66.
DOI: 10.1016/j.jmst.2021.03.038
Google Scholar
[19]
B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish, A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement, J. Manuf. Process. 35 (2018) 127–139.
DOI: 10.1016/j.jmapro.2018.08.001
Google Scholar
[20]
Q. Shen, X. Kong, X. Chen, Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties, J. Mater. Sci. Technol. 74 (2021) 136–142.
DOI: 10.1016/j.jmst.2020.10.037
Google Scholar
[21]
K.A. Osintsev, S.V. Konovalov, A.M. Glezer, V.E. Gromov, Y.F. Ivanov, I.A. Panchenko, R.V. Sundeev, Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels, Mater. Lett. 294 (2021) 129717.
DOI: 10.1016/j.matlet.2021.129717
Google Scholar
[22]
V. Gromov, Y. Ivanov, S. Konovalov, K. Osintsev, A. Semin, Y. Rubannikova, Modification of high-entropy alloy AlCoCrFeNi by electron beam treatment, J. Mater. Res. Technol. 13 (2021) 787–797.
DOI: 10.1016/j.jmrt.2021.05.012
Google Scholar
[23]
E. Abbasi, K. Dehghani, Phase prediction and microstructure of centrifugally cast non-equiatomic Co-Cr-Fe-Mn-Ni(Nb,C) high entropy alloys, J. Alloys Compd. 783 (2019) 292–299.
DOI: 10.1016/j.jallcom.2018.12.329
Google Scholar
[24]
S.A. Firstov, T.G. Rogul', N.A. Krapivka, S.S. Ponomarev, V. V. Kovylyaev, N.I. Danilenko, N.D. Bega, V.I. Danilenko, S.I. Chugunova, Structural Features and Solid-Solution Hardening of High-Entropy CrMnFeCoNi Alloy, Powder Metall. Met. Ceram. 55 (2016) 225–235.
DOI: 10.1007/s11106-016-9797-9
Google Scholar