Modeling the Temperature Dependences of the Dielectric Constant of PCM under Conditions of Intense Heating

Article Preview

Abstract:

The paper discusses computer modeling of the temperature dependences of the dielectric constant of polymer composite materials. Issues of the combined radio wave and thermal methods of diagnostics of nondestructive inspection of the polymer composite materials in the laboratory conditions are considered. The paper offers a method for combining the measurement and heating processes. This method can be implemented, the way is to do the heating and the measurement at the same frequency with using a high-power sounding wave. As a result, the radiant material heating is obtained, and we judge about the substance parameters and a presence of defects in the substance by a reflected wave in an indirect method. A descriptive characteristic of such a problem boils down to describing all the processes in the sample by the electrodynamic theory. The heating process can also be described by the electrodynamics equations, but the process will be described by the thermal equations in the nonstationary heating conditions in the most accurate way.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

736-741

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Cornbleet, Microwave Optics: The Optics of Microwave Antenna Design, Nauka, Moscow, (1980).

Google Scholar

[2] M. Born, E. Wolf, Principles of optics, Nauka, Moscow, (1973).

Google Scholar

[3] L.M. Brekhovsky, Waves in the layered media, Nauka, Moscow, (1973).

Google Scholar

[4] A. V. Bautin, N. M. Eryshov; Iu. A. Poliakov, The computation of reflection and transmission coefficients of radio waves, passing through a planar stratified medium, Radiotekhnika i elektronika, 21 (1976) 382-385.

Google Scholar

[5] A.S. Zav'yalov, On measuring the parameters of magnetodielectrics, Elektrodinamika i rasprostranenie voln. 4 (1984) 52-60.

Google Scholar

[6] N.A. Trefilov, Tekhnologicheskii kontrol' radioprozrachnykh dielektrikov pri nagreve., Saratov, (1989).

Google Scholar

[7] E.A. Vorob'ev, V.F. Mikhailov, A.A. Kharitonov, Microwave dielectrics under high temperature conditions, Sovetskoe Radio, Moscow, (1977).

Google Scholar

[8] V. D. Kindzheri, Izmereniya pri vysokikh temperaturakh Metody izmereniya svoistv materialov pri temperaturakh vyshe 1400 C vliyanie razlichnykh faktorov, Metallurgiya, Moscow, (1963).

Google Scholar

[9] I. E. Campbell, Tekhnika vysokikh temperature, Inostrannaya literature, Moscow, (1959).

Google Scholar

[10] Jow Jinder, Hawley Martin C., Finzel Mark C., Asmussen Jes.(jr), Microwave heating and dielectric diagnosis technique in a single-mode resonant carity, Rer. Sci. Instrum, 1 (1989). 96-103.

DOI: 10.1063/1.1140585

Google Scholar

[11] A.A. Berlin, Uglerodnye volokna i uglekompozity, Mir, Moscow, (1988).

Google Scholar

[12] E. Fitzer, Carbon fibers and carbon fiber reinforced plastics, Mir, Moscow, (1988).

Google Scholar

[13] L. McAllister, W. Luckman, Mnogonapravlennye uglerod-uglerodnye kompozity [Multidirectional carbon-carbon composites], Mir, Moscow, (1989).

Google Scholar

[14] V. V. Klyueva, Pribory dlya nerazrushayushchego kontrolya materialov i izdelii, Mashinostroenie, Moscow, (1976).

Google Scholar

[15] B.A. Grigor'ev, Impul'snyi nagrev izlucheniyami, Nauka, Moscow, (1974).

Google Scholar

[16] V. E. Gershenzon, V. Yu. Raizer, and V. S. Etkin. Metod perekhodnogo sloya v zadache o teplovom izluchenii sherokhovatoi poverkhnosti [The transition layer method in the problem of thermal radiation from a rough surface], Izv. vuzov. Radiofizika. 11 (1982) 1279–1284.

Google Scholar

[17] A.A Samarskii, P.N. Vabishchevich, Vychislitel'naya teploperedacha, Editorial URSS, Moscow, (2003).

Google Scholar

[18] G.V. Dmitrienko, А.А. Fedorov, G.L. Rivin, Radio-Frequency Method for Diagnostics Of Aeronautical Polymer Composite Materials, Jour of Adv Research in Dynamical & Control Systems, 11 (2019), 421-430.

Google Scholar

[19] V.V. Vasil'ev, Voloknistye i dispersnouprochnye kompozitsionnye materialy, Nauka, Moscow, (1976).

Google Scholar

[20] Application 2772520 France, MPK6N 01 Q 17/00 Material composite structural absorbant les ondes radar et utilisation d'un tel materiau, Escarmant Jean Francois; Giat Ind. SA, 9715681. Applied 11.12.97; Published 18.6.99.

Google Scholar

[21] A.A. Potapov, Metrologicheskoe obespechenie sredstv izmerenii dielektricheskoi pronitsaemosti, VINITI, Moscow, (1978).

Google Scholar

[22] G.V. Dmitrienko, D. V. Mukhin, G. L. Rivin, A. A. Fedorov, Increase In Accuracy Of Radio Wave Methods Of Diagnostics Of Polymer Composite Materials Defects, Solid State Technology 63 (2020) 2681-2699.

DOI: 10.3103/s106879982004025x

Google Scholar

[23] G.V. Dmitrienko, D. V. Mukhin, E.N. Zgural'skaya, Ustroistvo dlya diagnostiki i kontrolya radiovolnovym metodom polimernykh kompozitsionnykh materialov [Device to test and control PCMs by radio wave method] // Patent RF № 201679. Published 28.12.2020. in BI. -№1.

Google Scholar