[1]
F. Ghorbani, D. Li, S. Ni, Y. Zhou, B. Yu, 3D printing of acellular scaffolds for bone defect regeneration: A review, Materials Today Communications 22 (2020) 100979–100979.
DOI: 10.1016/j.mtcomm.2020.100979
Google Scholar
[2]
M. Zhang, R. Lin, X. Wang, J. Xue, C. Deng, C. Feng, . . Chang, J, 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration, Science Advances 6 (12) (2020) 6725–6725.
DOI: 10.1126/sciadv.aaz6725
Google Scholar
[3]
B. E. Grottkau, Z. Hui, Y. Yao, Y. Pang, Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques, International Journal of Molecular Sciences 21 (1) (2020) 315–315.
DOI: 10.3390/ijms21010315
Google Scholar
[4]
C. Migliaresi, A. Motta, Scaffolds for tissue engineering: biological design, materials, and fabrication, Pan Stanford, Singapore, (2014).
Google Scholar
[5]
D. R. Peterson, J. D. Bronzino, Biomechanics: principles and applications, CRC Press, Nueva York, (2008).
Google Scholar
[6]
F. Senatov, K. Niaza, M. Zadorozhnyy, A. Maksimkin, S. Kaloshkin, Y. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, Journal of the Mechanical Behavior of Biomedical Materials 57 (2016) 139–148.
DOI: 10.1016/j.jmbbm.2015.11.036
Google Scholar
[7]
R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates, H. A. Awad, 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery, Annals of Biomedical Engineering 45 (1) (2016) 23–44.
DOI: 10.1007/s10439-016-1678-3
Google Scholar
[8]
F. Senatov, K. Niaza, A. Stepashkin, S. Kaloshkin, Low-cycle fatigue behavior of 3d- printed PLA-based porous scaffolds, Composites Part B: Engineering 97 (2016) 193–200.
DOI: 10.1016/j.compositesb.2016.04.067
Google Scholar
[9]
A. Gregor, E. Filová, M. Novák, J. Kronek, H. Chlup, M. Buzgo, J. Hošek, Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer, Journal of Biological Engineering (1) (2017) 11–11.
DOI: 10.1186/s13036-017-0074-3
Google Scholar
[10]
G. Pezzotti, Advanced materials for joint implants, Pan Stanford Publishing, Singapore, (2013).
Google Scholar
[11]
R. S. Snell, Clinical anatomy by regions, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, (2012).
Google Scholar
[12]
N. Sultana, Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering, Springer, Berlin, Heidelberg, (2013).
Google Scholar
[13]
T. Uyar, E. Kny, Electrospun Materials for Tissue Engineering and Biomedical Applications Research, Design and Commercialization, Elsevier Science, San Diego, (2017).
Google Scholar
[14]
C. L. Vanputte, J. L. Regan, A. F. Russo, Seeleys essentials of anatomy and physiology, McGraw-Hill, (2010).
Google Scholar
[15]
R. Enugopalan, M. Wu, Medical device materials I: proceedings from the materials and processes for medical devices conference (2005).
Google Scholar
[16]
Q. Wang, Smart materials for tissue engineering: applications, Royal Society of Chemistry, London, (2017).
Google Scholar
[17]
H. Xu, D. Han, J. S. Dong, G. X. Shen, G. Chai, Z. Y. Yu, Ai, Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects, The International Journal of Medical Robotics and Computer Assisted Surgery (2009).
DOI: 10.1002/rcs.290
Google Scholar
[18]
E. Saito, H. Kang, J. M. Taboas, A. Diggs, C. L. Flanagan, S. J. Hollister, Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications, Journal of Materials Science: Materials in Medicine 21 (8) (2010) 2371–2383.
DOI: 10.1007/s10856-010-4091-8
Google Scholar
[19]
H. Zhou, J. G. Lawrence, S. B. Bhaduri, Fabrication aspects of PLA-CaP/PLGA-CaP com- posites for orthopedic applications: A review, Acta Biomaterialia 8 (6) (2012) 1999–(2016).
DOI: 10.1016/j.actbio.2012.01.031
Google Scholar
[20]
T. Serra, J. Planell, M. Navarro, High-resolution PLA-based composite scaffolds via 3-D printing technology, Acta Biomaterialia 9 (3) (2013) 5521–5530.
DOI: 10.1016/j.actbio.2012.10.041
Google Scholar
[21]
R. Kossowsky, N. Kossovsky, Advances in materials science and implant orthopedic surgery, Springer Verlag, (2013).
Google Scholar
[22]
A. W. Batchelor, M. Chandrasekaran, Service characteristics of biomedical materials and implants, Imperial College Press, Singapore, (2004).
Google Scholar
[23]
R. Veeramani, SJ. Holla, S. Chumber, Grays Anatomy For Students, Elsevier Health Sciences, (2017).
Google Scholar
[24]
S. H. Park, D. S. Park, J. W. Shin, Y. G. Kang, H. K. Kim, T. R. Yoon, J. W. Shin, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA, Journal of Materials Science: Materials in Medicine 23 (11) (2012) 2671–2678.
DOI: 10.1007/s10856-012-4738-8
Google Scholar
[25]
P. Gentile, V. Chiono, I. Carmagnola, P. Hatton, An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering, International Journal of Molecular Sciences 15 (3) (2014) 3640–3659.
DOI: 10.3390/ijms15033640
Google Scholar
[26]
J. P. Temple, D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, W. L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D- printed PCL scaffolds, Journal of Biomedical Materials Research Part A (2014).
DOI: 10.1002/jbm.a.35107
Google Scholar
[27]
G. H. Wu, S. H. Hsu, Review: Polymeric-Based 3D Printing for Tissue Engineering, Journal of Medical and Biological Engineering 35 (3) (2015) 285–292.
DOI: 10.1007/s40846-015-0038-3
Google Scholar
[28]
N. Eliaz, Degradation of implant materials, Springer, New York, (2012).
Google Scholar
[29]
J. An, J. E. M. Teoh, R. Suntornnond, C. K. Chua, Design and 3D printing of scaffolds and tissues, Engineering 1 (2) (2015) 261–268.
DOI: 10.15302/j-eng-2015061
Google Scholar
[30]
E. B. Bae, K. H. Park, J. H. Shim, H. Y. Chung, J. W. Choi, J. J. Lee, J. B. Huh, Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration, BioMed Research International (2018) 1–12.
DOI: 10.1155/2018/2876135
Google Scholar
[31]
Recent Advanced in Biomaterials for 3D Printing and Tissue Engineering, Journal of Functional biomaterials 9 (2018) 22–22.
Google Scholar
[32]
O. Tao, J. Kort-Mascort, Y. Lin, H. M. Pham, A. M. Charbonneau, O. A. Elkashty, S. D. Tran, The Applications of 3D Printing for Craniofacial Tissue Engineering, Micromachines 10 (7) (2019) 480–480.
DOI: 10.3390/mi10070480
Google Scholar
[33]
L. Chen, L. Shao, F. Wang, Y. Huang, F. Gao, Enhancement in sustained release of an- timicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration, RSC Advances 9 (19) (2019).
DOI: 10.1039/c8ra08788a
Google Scholar
[34]
B. Leukers, H. Gülkan, S. H. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing, Journal of Materials Science: Materials in Medicine 16 (12)(2005) 1121–1124.
DOI: 10.1007/s10856-005-4716-5
Google Scholar
[35]
F. C. Fierz, F. Beckmann, M. Huser, S. H. Irsen, B. Leukers, F. Witte, . . Müller, B, The morphology of anisotropic 3D-printed hydroxyapatite scaffolds, Biomaterials 29 (28) (2008) 3799–3806.
DOI: 10.1016/j.biomaterials.2008.06.012
Google Scholar
[36]
S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing, Materials today 16 (12) (2013) 496–504.
DOI: 10.1016/j.mattod.2013.11.017
Google Scholar
[37]
S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams, K. K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications, Materials Science and Engineering: C 47 (2015) 237–247.
DOI: 10.1016/j.msec.2014.11.024
Google Scholar
[38]
H. Y. He, J. Y. Zhang, X. Mi, Y. Hu, X. Y. Gu, Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study, International journal of clinical and experimental medicine 8 (7) (2015) 11777–11777.
Google Scholar
[39]
C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, . . Wei, Y, 3D printing of bone tissue engineering scaffolds, Bioactive Materials 5 (1) (2020) 82–91.
DOI: 10.1016/j.bioactmat.2020.01.004
Google Scholar
[40]
B. Bisht, A. Hope, A. Mukherjee, M. Paul, Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft, Annals of Biomedical Engineering 49 (4) (2021) 1128–1150.
DOI: 10.1007/s10439-021-02752-9
Google Scholar