[1]
D. H. Vo, M. D. Yehualaw, C. L. Hwang, M. C. Liao, K. D. Tran Thi, and Y. F. Chao, Mechanical and durability properties of recycled aggregate concrete produced from recycled and natural aggregate blended based on the Densified Mixture Design Algorithm method,, J. Build. Eng., vol. 35, no. July 2020, p.102067, (2021).
DOI: 10.1016/j.jobe.2020.102067
Google Scholar
[2]
L. Evangelista and J. De Brito, Environmental life cycle assessment of concrete made with fine recycled concrete aggregates,, Port. SB 2007 - Sustain. Constr. Mater. Pract. Chall. Ind. New Millenn., no. February 2014, p.789–794, (2007).
DOI: 10.1016/j.cemconcomp.2006.12.004
Google Scholar
[3]
J. S. Lim, C. B. Cheah, and M. B. Ramli, The setting behavior, mechanical properties and drying shrinkage of ternary blended concrete containing granite quarry dust and processed steel slag aggregate,, Constr. Build. Mater., vol. 215, p.447–461, (2019).
DOI: 10.1016/j.conbuildmat.2019.04.162
Google Scholar
[4]
R. Kurad, J. D. Silvestre, J. de Brito, and H. Ahmed, Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete,, J. Clean. Prod., vol. 166, p.485–502, (2017).
DOI: 10.1016/j.jclepro.2017.07.236
Google Scholar
[5]
S. Ponnada, V. R. Sankar Cheela, and S. S. S. V. Gopala Raju, Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate,, Mater. Today Proc., vol. 32, p.989–996, (2020).
DOI: 10.1016/j.matpr.2020.06.203
Google Scholar
[6]
K. Muthusamy, N. F. A. Jamaludin, M. N. Kamaruzzaman, M. Z. Ahmad, N. A. Zamri, and A. M. Albshir Budiea, Compressive strength of palm oil clinker lightweight aggregate concrete containing coal bottom ash as sand replacement,, Mater. Today Proc., vol. 46, p.1724–1728, (2020).
DOI: 10.1016/j.matpr.2020.07.527
Google Scholar
[7]
Y. Malier, High Performance Conrete From material to structure. (1992).
Google Scholar
[8]
H. Al-Khaiat and M. N. Haque, Effect of Initial Curing On Early Strength and Physical Properties of A Lightweight Concrete,, Cem. Concr. Res., vol. 28, no. 6, p.859–866, (1998).
DOI: 10.1016/s0008-8846(98)00051-9
Google Scholar
[9]
M. H. Zhang and O. E. Gjorv, Permeability of high-strength lightweight concrete,, ACI Mater. J., vol. 88, no. 5, p.463–469, (1991).
Google Scholar
[10]
T. A. Holm and T. W. Bremner, State-of-the-Art Report on High-Strength, High-Durability Structural Low-Density Concrete for Applications in Severe Marine Environments,, US Army Corps Eng. Eng. Res. Dev. Center, ERDC/SL TR-00-3, no. January 2000, (2000).
Google Scholar
[11]
A. M. Humada and Y. Gul, The use of palm oil clinker as a sustainable construction material: A review,, Cem. Concr. Compos., vol. 106, no. February 2019, p.103447, (2019).
Google Scholar
[12]
K. Muthusamy et al., Properties of high strength palm oil clinker lightweight concrete containing palm oil fuel ash in tropical climate,, Constr. Build. Mater., vol. 199, p.163–177, (2019).
DOI: 10.1016/j.conbuildmat.2018.11.211
Google Scholar
[13]
K. Muthusamy, A. M. A. Budiea, S. M. Syed Mohsin, N. S. Muhammad Zam, and N. E. Ahmad Nadzri, Properties of fly ash cement brick containing palm oil clinker as fine aggregate replacement,, Mater. Today Proc., no. xxxx, (2020).
DOI: 10.1016/j.matpr.2020.07.260
Google Scholar
[14]
H. M. Hamada, G. A. Jokhio, A.A. Al-Atta, F. M. Yahaya, K. Muthusamy, A. M. Humada and Y. Gul, The use of palm oil clinker as a sustainable construction material: A review,, Constr. Build. Mater., vol. 106, 103447, (2020).
DOI: 10.1016/j.cemconcomp.2019.103447
Google Scholar
[15]
Z. Tang, W. Li, Y. Hu, J. L. Zhou, and V. W. Y. Tam, Review on designs and properties of multifunctional alkali-activated materials (AAMs),, Constr. Build. Mater., vol. 200, p.474–489, (2019).
DOI: 10.1016/j.conbuildmat.2018.12.157
Google Scholar
[16]
D. W. Olson, Industrial garnet,, Min. Eng., vol. 70, no. 7, p.62–63, (2018).
Google Scholar
[17]
G. F. Huseien, A. R. M. Sam, K. W. Shah, A. M. A. Budiea, and J. Mirza, Utilizing spend garnets as sand replacement in alkali-activated mortars containing fly ash and GBFS,, Constr. Build. Mater., vol. 225, p.132–145, (2019).
DOI: 10.1016/j.conbuildmat.2019.07.149
Google Scholar
[18]
H. L. Muttashar, M. A. M. Ariffin, M. N. Hussein, M. W. Hussin, and S. Bin Ishaq, Self-compacting geopolymer concrete with spend garnet as sand replacement,, J. Build. Eng., vol. 15, no. October, p.85–94, (2018).
DOI: 10.1016/j.jobe.2017.10.007
Google Scholar
[19]
M. A. Ab Kadir et al., Performance of spent garnet as a sand replacement in high-strength concrete exposed to high temperature,, J. Struct. Fire Eng., vol. 10, no. 4, p.468–481, (2019).
DOI: 10.1108/jsfe-10-2018-0025
Google Scholar
[20]
BS EN12390-2, BS EN 12390-2:2000, Testing hardened concrete.
Google Scholar
[21]
BS EN 12350-2, Testing fresh concrete — Part 2: Slump test.
Google Scholar
[22]
BS EN 12390-3, BS EN 12390-3:2001, Compressive strength of test specimens.
Google Scholar
[23]
H. L. Muttashar, M. W. Hussin, J. M. Mohd Azreen Mohd Arriffin, N. Hasanah, and A. U. Shettima, Mechanical Properties of Self-Compacting Geopolymer Concrete Containing Spent Garnet as Replacement for Fine Aggregate,, J. Teknol., vol. 3, p.23–29, (2017).
DOI: 10.11113/jt.v79.9957
Google Scholar
[24]
A. M. A. Budiea, W. Z. Sek, S. N. Mokhatar, K. Muthusamy, and A. R. M. Yusoff, Structural Performance Assessment of High Strength Concrete Containing Spent Garnet under Three Point Bending Test,, IOP Conf. Ser. Mater. Sci. Eng., vol. 1144, no. 1, p.012018, (2021).
DOI: 10.1088/1757-899x/1144/1/012018
Google Scholar
[25]
A. G. Khoshkenari, P. Shafigh, M. Moghimi, and H. Bin Mahmud, The role of 0-2mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete,, Mater. Des., vol. 64, p.345–354, (2014).
DOI: 10.1016/j.matdes.2014.07.048
Google Scholar
[26]
P. K. Mehta and P. J. M. Monteiro, Microstructure, Properties and Materials, vol. 7. (2009).
Google Scholar
[27]
H. L. Muttashar, M. A. M. Ariffin, M. N. Hussein, M. W. Hussin, and S. Bin Ishaq, Self-compacting geopolymer concrete with spend garnet as sand replacement,, J. Build. Eng., vol. 15, no. September 2017, p.85–94, (2018).
DOI: 10.1016/j.jobe.2017.10.007
Google Scholar
[28]
N. H. Abdul Shukor Lim, N. F. N. Alladin, H. Mohammadhosseini, N. F. Ariffin, and A. N. Mazlan, Properties of Mortar Incorporating Spent Garnet as Fine Aggregates Replacement,, Int. J. Integr. Eng., vol. 12, no. 9, p.96–102, (2020).
Google Scholar