[1]
G. R. McDowell, MA, W. L. Lim, R. A. and N. H. T. (2005). Laboratory simulation of train loading and tamping on ballast. Proceedings of the Institution of Civil Engineers - Transport, 158(2), 89–95.
DOI: 10.1680/tran.2005.158.2.89
Google Scholar
[2]
Indraratna, B., Khabbaz, H., Salim, W., & Christie, D. (2006). Geotechnical properties of ballast and the role of geosynthetics in rail track stabilisation. Ground Improvement, 10(3), 91–101. https://doi.org/10.1680/grim.2006.10.3.91.
DOI: 10.1680/grim.2006.10.3.91
Google Scholar
[3]
Indraratna, Buddhima, Ngo, T., Bessa Ferreira, F., Rujikiatkamjorn, C., & Shahkolahi, A. (2020). Laboratory examination of ballast deformation and degradation under impact loads with synthetic inclusions. Transportation Geotechnics, 25(April), 100406. https://doi.org/10.1016/j.trgeo.2020.100406.
DOI: 10.1016/j.trgeo.2020.100406
Google Scholar
[4]
Wu, H., Zhu, L., Song, W., Xu, Z., Xu, F., & Gong, H. (2021). Impact performance of ballast by incorporating waste tire-derived aggregates. Construction and Building Materials, 288, 122992. https://doi.org/10.1016/j.conbuildmat.2021.122992.
DOI: 10.1016/j.conbuildmat.2021.122992
Google Scholar
[5]
Mangi, S. A., Ibrahim, M. H. W., Jamaluddin, N., Arshad, M. F., Memon, F. A., Jaya, R. P., & Shahidan, S. (2018). A review on potential use of coal bottom ash as a supplementary cementing material in sustainable concrete construction. International Journal of Integrated Engineering, 10(9), 127–135. https://doi.org/10.30880/ijie.2018.10.09.006.
DOI: 10.1063/1.5115361
Google Scholar
[6]
Paija, N., Kolay, P. K., Mohanty, M., & Kumar, S. (2020). Ground Bottom Ash Application for Conventional Mortar and Geopolymer Paste. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1), 04019025. https://doi.org/10.1061/(asce)hz.2153-5515.0000466.
DOI: 10.1061/(asce)hz.2153-5515.0000466
Google Scholar
[7]
Koohmishi, M. (2019). Evaluation of the effect of water saturation on the strength of individual railway ballast aggregate. Transportation Geotechnics, 18(December 2018), 163–172. https://doi.org/10.1016/j.trgeo.2018.12.005.
DOI: 10.1016/j.trgeo.2018.12.005
Google Scholar
[8]
Argiz, C., Sanjuán, M. Á., & Menéndez, E. (2017). Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/6068286.
DOI: 10.1155/2017/6068286
Google Scholar
[9]
Antoni, Klarens, K., Indranata, M., Al Jamali, L., & Hardjito, D. (2017). The use of bottom ash for replacing fine aggregate in concrete paving blocks. MATEC Web of Conferences, 138. https://doi.org/10.1051/matecconf/201713801005.
DOI: 10.1051/matecconf/201713801005
Google Scholar
[10]
Youventharan, D., Rokiah, O., & Arif, S. M. (2020). The effects of bottom ash in coastal sand. IOP Conference Series: Materials Science and Engineering, 712(1). https://doi.org/10.1088/1757-899X/712/1/012041.
DOI: 10.1088/1757-899x/712/1/012041
Google Scholar
[11]
Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003.
DOI: 10.1016/j.pecs.2009.11.003
Google Scholar
[12]
Vaitkus, A., Gražulytė, J., Vorobjovas, V., Šernas, O., & Kleizienė, R. (2018). Potential of MSWI bottom ash to be used as aggregate in road building materials. Baltic Journal of Road and Bridge Engineering, 13(1), 77–86. https://doi.org/10.3846/bjrbe.2018.401.
DOI: 10.3846/bjrbe.2018.401
Google Scholar
[13]
Lin, C., Weng, M., & Chang, C. (2012). Effect of incinerator bottom-ash composition on the mechanical behavior of back fi ll material. Journal of Environmental Management, 113, 377–382. https://doi.org/10.1016/j.jenvman.2012.09.013.
DOI: 10.1016/j.jenvman.2012.09.013
Google Scholar
[14]
Rani, R., & Jain, M. K. (2017). Effect of bottom ash at different ratios on hydraulic transportation of fly ash during mine fill. Powder Technology, 315, 309–317. https://doi.org/10.1016/j.powtec.2017.04.025.
DOI: 10.1016/j.powtec.2017.04.025
Google Scholar
[15]
Dhir, R. K., Brito, J. de, Lynn, C. J., & Silva, R. V. (2018). Municipal Incinerated Bottom Ash Characteristics. In Sustainable Construction Materials. https://doi.org/10.1016/b978-0-08-100997-0.00004-x.
DOI: 10.1016/b978-0-08-100997-0.00004-x
Google Scholar
[16]
Haque, A., Wang, Z., Chandra, S., Dong, B., Khan, L., & Hamlen, K. W. (2017). FUSION - An online method for multistream classification. International Conference on Information and Knowledge Management, Proceedings, Part F1318, 919–928. https://doi.org/10.1145/3132847.3132886.
DOI: 10.1145/3132847.3132886
Google Scholar
[17]
Aiyewalehinmi, E. O., & Adeoye, T. E. (2016). Recycling Of Concrete Waste Material from Construction Demolition American Journal of Engineering Research ( AJER ). 4, 182–191.
Google Scholar
[18]
Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357–369. https://doi.org/10.1016/j.conbuildmat.2014.12.103.
DOI: 10.1016/j.conbuildmat.2014.12.103
Google Scholar
[19]
Ghannam, S. (2009). Recycling Destructed Concrete in Building Reconstruction. Jordan Engineers Association Conferences, 1–11. http://www.jeaconf.org/UploadedFiles/Document/c996f878-b158-447c-b3f7-d4b8ede0f9d5.pdf.
Google Scholar
[20]
Kabir, S., Al-Shayeb, A., & Khan, I. M. (2016). Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials. Procedia Engineering, 145(December), 1518–1525. https://doi.org/10.1016/j.proeng.2016.04.191.
DOI: 10.1016/j.proeng.2016.04.191
Google Scholar
[21]
Samanth, S. (2016). Study of Strength Properties of Concrete with Construction Debris as Aggregates. International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE), 1(September), 0–4.
Google Scholar
[22]
Topçu, I. B., & Şengel, S. (2004). Properties of concretes produced with waste concrete aggregate. Cement and Concrete Research, 34(8), 1307–1312. https://doi.org/10.1016/j.cemconres.2003.12.019.
DOI: 10.1016/j.cemconres.2003.12.019
Google Scholar
[23]
Saberian, M., Li, J., Boroujeni, M., Law, D., & Li, C. (2020). Resources, Conservation & Recycling Application of demolition wastes mixed with crushed glass and crumb rubber in pavement base / subbase. Resources, Conservation & Recycling, 156(November 2019), 104722. https://doi.org/10.1016/j.resconrec.2020.104722.
DOI: 10.1016/j.resconrec.2020.104722
Google Scholar
[24]
Ucol-Ganiron Jr, T. (2012). Concrete Debris as Alternative Fine Aggregate for Architectural Finishing Mortar. Architecture Research, 2(5), 111–114. https://doi.org/10.5923/j.arch.20120205.06.
DOI: 10.5923/j.arch.20120205.06
Google Scholar
[25]
Nagapan, Sasitharan & Abdul Rahman, Ismail & Asmi, A. (2014). CONSTRUCTION WASTE MANAGEMENT : Malaysian Perspective International Conference on Civil and Environmental Engineering for Sustainability. April 2012, 1–12.
Google Scholar
[26]
Youventharan, D., Ramandhansyah, P. J., Jeevithan, K. M., Rokiah, O., Mohd Arif, S., & Yaacob, H. (2021). Durability Performance of Concrete Debris and Bottom Ash as an Alternative Track Ballast Material. IOP Conference Series: Earth and Environmental Science, 682(1). https://doi.org/10.1088/1755-1315/682/1/012053.
DOI: 10.1088/1755-1315/682/1/012053
Google Scholar
[27]
Koohmishi, M., & Azarhoosh, A. (2020). Hydraulic conductivity of fresh railway ballast mixed with crumb rubber considering size and percentage of crumb rubber as well as aggregate gradation. Construction and Building Materials, 241, 118133. https://doi.org/10.1016/j.conbuildmat.2020.118133.
DOI: 10.1016/j.conbuildmat.2020.118133
Google Scholar
[28]
Sadeghi, J. M., Zakeri, J. A., & Najar, M. E. M. (2016). Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performance. International Journal of Railway, 9(2), 27–35. https://doi.org/10.7782/ijr.2016.9.2.027.
DOI: 10.7782/ijr.2016.9.2.027
Google Scholar
[29]
Koohmishi, M., & Palassi, M. (2017). Effect of particle size distribution and subgrade condition on degradation of railway ballast under impact loads. Granular Matter, 19(3), 1–12. https://doi.org/10.1007/s10035-017-0747-0.
DOI: 10.1007/s10035-017-0747-0
Google Scholar
[30]
Pratap, R., Nimbalkar, S., Singh, S., & Choudhury, D. (2020). Geotextiles and Geomembranes Field assessment of railway ballast degradation and mitigation using geotextile. Geotextiles and Geomembranes, 48(3), 275–283. https://doi.org/10.1016/j.geotexmem.2019.11.013.
DOI: 10.1016/j.geotexmem.2019.11.013
Google Scholar
[31]
Singh, R. P., Nimbalkar, S., Singh, S., & Choudhury, D. (2020). Field assessment of railway ballast degradation and mitigation using geotextile. Geotextiles and Geomembranes, 48(3), 275–283. https://doi.org/10.1016/j.geotexmem.2019.11.013.
DOI: 10.1016/j.geotexmem.2019.11.013
Google Scholar
[32]
Olatayo, L., Ojo, A., & Adebayo, C. (2017). Journal of African Earth Sciences The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks. Journal of African Earth Sciences, 129, 659–667. https://doi.org/10.1016/j.jafrearsci.2017.02.013.
DOI: 10.1016/j.jafrearsci.2017.02.013
Google Scholar
[33]
Wang, B., Martin, U., & Rapp, S. (2017). Computers and Geotechnics Discrete element modeling of the single-particle crushing test for ballast stones. Computers and Geotechnics, 88, 61–73. https://doi.org/10.1016/j.compgeo.2017.03.007.
DOI: 10.1016/j.compgeo.2017.03.007
Google Scholar
[34]
Kim, J., Park, B. S., Woo, S. I., & Choi, Y. T. (2020). Evaluation of ballasted-track condition based on aggregate-shape characterization. Construction and Building Materials, 232, 117082. https://doi.org/10.1016/j.conbuildmat.2019.117082.
DOI: 10.1016/j.conbuildmat.2019.117082
Google Scholar
[35]
Guo, Y., Markine, V., Song, J., & Jing, G. (2018). Ballast degradation: Effect of particle size and shape using Los Angeles Abrasion test and image analysis. Construction and Building Materials, 169, 414–424. https://doi.org/10.1016/j.conbuildmat.2018.02.170.
DOI: 10.1016/j.conbuildmat.2018.02.170
Google Scholar
[36]
Indraratna, B., Lackenby, J., & Christie, D. (2005). Effect of confining pressure on the degradation of ballast under cyclic loading. Geotechnique, 55(4), 325–328. https://doi.org/10.1680/geot.2005.55.4.325.
DOI: 10.1680/geot.2005.55.4.325
Google Scholar
[37]
Indraratna, Buddhima, Salim, W., & Rujikiatkamjorn, C. (2011). Advanced rail geotechnology - Ballasted track. In Advanced Rail Geotechnology - Ballasted Track. https://doi.org/10.1201/b10861.
DOI: 10.1201/b10861
Google Scholar
[38]
Esmaeili, M., Shamohammadi, A., & Farsi, S. (2020). Effect of deconstructed tire under sleeper pad on railway ballast degradation under cyclic loading. Soil Dynamics and Earthquake Engineering, 136(May), 106265. https://doi.org/10.1016/j.soildyn.2020.106265.
DOI: 10.1016/j.soildyn.2020.106265
Google Scholar
[39]
Indraratna, Buddhima. (2016). 1st Ralph Proctor Lecture of ISSMGE. Railroad performance with special reference to ballast and substructure characteristics. Transportation Geotechnics, 7, 74–114. https://doi.org/10.1016/j.trgeo.2016.05.002.
DOI: 10.1016/j.trgeo.2016.05.002
Google Scholar
[40]
Li, C., Zheng, J., Zhang, Z., Sha, A., & Li, J. (2020). Morphology-based indices and recommended sampling sizes for using image-based methods to quantify degradations of compacted aggregate materials. Construction and Building Materials, 230, 116970. https://doi.org/10.1016/j.conbuildmat.2019.116970.
DOI: 10.1016/j.conbuildmat.2019.116970
Google Scholar
[41]
Sun, Y., & Zheng, C. (2017). Particuology Breakage and shape analysis of ballast aggregates with different size distributions. Particuology, 35, 84–92. https://doi.org/10.1016/j.partic.2017.02.004.
DOI: 10.1016/j.partic.2017.02.004
Google Scholar
[42]
Youventharan, D., Rokiah, O., & Mohd Arif, S. (2021). The effects of particle breakage and shape on the strength parameters of sandy soil. IOP Conference Series: Earth and Environmental Science, 682(1), 0–9. https://doi.org/10.1088/1755-1315/682/1/012021.
DOI: 10.1088/1755-1315/682/1/012021
Google Scholar
[43]
Rohrman, A. K., Kashani, H. F., & Ho, C. L. (2020). Effects of natural abrasion on railroad ballast strength and deformation properties. Construction and Building Materials, 247, 118315. https://doi.org/10.1016/j.conbuildmat.2020.118315.
DOI: 10.1016/j.conbuildmat.2020.118315
Google Scholar
[44]
Sussmann, T. R., Ruel, M., & Chrismer, S. M. (2012). Source of ballast fouling and influence considerations for condition assessment criteria. Transportation Research Record, 2289, 87–94. https://doi.org/10.3141/2289-12.
DOI: 10.3141/2289-12
Google Scholar
[45]
Gundavaram, D., & Hussaini, S. K. K. (2020). Performance evaluation of polyurethane-stabilized railroad ballast under direct shear conditions. Construction and Building Materials, 255, 119304. https://doi.org/10.1016/j.conbuildmat.2020.119304.
DOI: 10.1016/j.conbuildmat.2020.119304
Google Scholar
[46]
Indraratna, B., Babar Sajjad, M., Ngo, T., Gomes Correia, A., & Kelly, R. (2019). Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches. Transportation Geotechnics, 21, 100260. https://doi.org/10.1016/j.trgeo. 2019.100260.
DOI: 10.1016/j.trgeo.2019.100260
Google Scholar
[47]
Koohmishi, M. (2019). Drainage potential of degraded railway ballast considering initial gradation and intrusion of external fine materials. Soils and Foundations, 59(6), 2265–2278. https://doi.org/10.1016/j.sandf.2019.12.011.
DOI: 10.1016/j.sandf.2019.12.011
Google Scholar
[48]
Koohmishi, M., & Palassi, M. (2018). Effect of gradation of aggregate and size of fouling materials on hydraulic conductivity of sand-fouled railway ballast. Construction and Building Materials, 167, 514–523. https://doi.org/10.1016/j.conbuildmat.2018.02.040.
DOI: 10.1016/j.conbuildmat.2018.02.040
Google Scholar
[49]
Navaratnarajah, S. K., Indraratna, B., & Ngo, N. T. (2018). Influence of Under Sleeper Pads on Ballast Behavior Under Cyclic Loading: Experimental and Numerical Studies. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 04018068. https://doi.org/10.1061/(asce)gt.1943-5606.0001954.
DOI: 10.1061/(asce)gt.1943-5606.0001954
Google Scholar
[50]
Qi, Y., & Indraratna, B. (2020). Energy-Based Approach to Assess the Performance of a Granular Matrix Consisting of Recycled Rubber, Steel-Furnace Slag, and Coal Wash. Journal of Materials in Civil Engineering, 32(7), 04020169. https://doi.org/10.1061/(asce)mt.1943-5533.0003239.
DOI: 10.1061/(asce)mt.1943-5533.0003239
Google Scholar
[51]
Sweta, K., & Hussaini, S. K. K. (2018). Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions. Geotextiles and Geomembranes, 46(3), 251–256. https://doi.org/10.1016/j.geotexmem.2017.12.001.
DOI: 10.1016/j.geotexmem.2017.12.001
Google Scholar