Dimensional Accuracy of 3D - Printed Acrylonitrile Butadiene Styrene: Effect of Size, Layer Thickness, and Infill Density

Article Preview

Abstract:

The adoption of Additive Manufacturing (AM) is continuously growing due to its capability to produce complex shapes which leads to the dependence of manufacturers on AM to replace conventional manufacturing processes. One important focus of research now is on the accuracy of 3D printed products produced via the Fused Deposition Modeling (FDM). These products have great potential to be applied to tooling and other rapid prototyping applications. The aim of this study is to assess the accuracy of 3D printed Acrylonitrile Butadiene Styrene (ABS) through manual measurements of dimensions. Several sets of samples with cubic shapes were printed and measured using a digital micrometer to evaluate the dimensional accuracy of the 3d-printed parts. A 22 full factorial design was employed to investigate the effects of infill density and layer thickness on the dimensional accuracy of ABS parts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-25

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. M. Delda, B. J. Tuazon, and J. R. C. Dizon, Assessment of Interfacial Adhesion of Adhesively Bonded 3D-Printed Thermoplastics,, Mater. Sci. Forum, vol. 1005, p.157–165, 2020,.

DOI: 10.4028/www.scientific.net/msf.1005.157

Google Scholar

[2] A. H. Espera, J. R. C. Dizon, Q. Chen, and R. C. Advincula, 3D-printing and advanced manufacturing for electronics,, Prog. Addit. Manuf., vol. 4, no. 3, p.245–267, 2019,.

DOI: 10.1007/s40964-019-00077-7

Google Scholar

[3] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers,, Addit. Manuf., vol. 20, no. December, p.44–67, 2018,.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar

[4] M. T. Espino, B. J. Tuazon, G. S. Robles, and J. R. C. Dizon, Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers,, Mater. Sci. Forum, vol. 1005, p.166–173, 2020,.

DOI: 10.4028/www.scientific.net/msf.1005.166

Google Scholar

[5] B. J. Tuazon, M. T. Espino, and J. R. C. Dizon, Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature,, Mater. Sci. Forum, vol. 1005, p.141–149, 2020,.

DOI: 10.4028/www.scientific.net/msf.1005.141

Google Scholar

[6] J. R. R. Diego, D. W. C. Martinez, G. S. Robles, and J. R. C. Dizon, Development of Smartphone-Controlled Hand and Arm Exoskeleton for Persons with Disability,, Open Eng., vol. 11, no. 1, p.161–170, 2021,.

DOI: 10.1515/eng-2021-0016

Google Scholar

[7] L. D. Tijing, J. R. C. Dizon, and G. G. C. Jr, 3D-Printed Absorbers for Solar-Driven Interfacial Water Evaporation : A Mini-Review,, vol. 3, no. 1, p.1–9, (2021).

DOI: 10.26877/asset.v3i1.8367

Google Scholar

[8] S. Mouaci et al., Effect of Gamma Irradiation Dose on Space Charge in e-Beam Irradiated PET Films,, Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, vol. 2019-Octob, no. Limm, p.777–780, 2019,.

DOI: 10.1109/ceidp47102.2019.9009658

Google Scholar

[9] R. N. M. Delda, R. B. Basuel, R. P. Hacla, D. W. C. Martinez, J.-J. Cabibihan, and J. R. C. Dizon, 3D Printing Polymeric Materials for Robots with Embedded Systems,, Technologies, p.1–26, 2021, doi: https://doi.org/10.3390/technologies9040082.

DOI: 10.3390/technologies9040082

Google Scholar

[10] E. B. Caldona, J. R. C. Dizon, R. A. Viers, V. J. Garcia, Z. J. Smith, and R. C. Advincula, Additively manufactured high performance polymeric materials and their potential use in the oil and gas industry., (2017).

DOI: 10.1557/s43579-021-00134-9

Google Scholar

[11] G. W. Melenka, J. S. Schofield, M. R. Dawson, and J. P. Carey, Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer,, Rapid Prototyp. J., vol. 21, no. 5, p.618–627, 2015,.

DOI: 10.1108/rpj-09-2013-0093

Google Scholar

[12] M. M. Hanon, L. Zsidai, and Q. Ma, Accuracy investigation of 3D printed PLA with various process parameters and different colors,, Mater. Today Proc., vol. 42, p.3089–3096, 2021,.

DOI: 10.1016/j.matpr.2020.12.1246

Google Scholar

[13] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,, Compos. Part B Eng., vol. 143, no. February, p.172–196, 2018,.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[14] J. R. C. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. C. Advincula, 3D Printed Injection Molds Using Various 3D Printing Technologies,, Mater. Sci. Forum, vol. 1005, p.150–156, 2020,.

DOI: 10.4028/www.scientific.net/msf.1005.150

Google Scholar

[15] J. Kechagias, P. Stavropoulos, A. Koutsomichalis, I. Ntintakis, and N. Vaxevanidis, Dimensional Accuracy Optimization of Prototypes produced by PolyJet Direct 3D Printing Technology,, p.61–65.

Google Scholar

[16] M. N. Islam, B. Boswell, and A. Pramanik, An investigation of dimensional accuracy of parts produced by three-dimensional printing,, Lect. Notes Eng. Comput. Sci., vol. 1 LNECS, p.522–525, (2013).

Google Scholar

[17] K. Tiwari and S. Kumar, Analysis of the factors affecting the dimensional accuracy of 3D printed products,, Mater. Today Proc., vol. 5, no. 9, p.18674–18680, 2018,.

DOI: 10.1016/j.matpr.2018.06.213

Google Scholar

[18] A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Osman, Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering,, PLoS One, vol. 9, no. 9, p.1–14, 2014,.

DOI: 10.1371/journal.pone.0108252

Google Scholar

[19] A. Boschetto and L. Bottini, Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling,, Robot. Comput. Integr. Manuf., vol. 37, p.103–114, 2016,.

DOI: 10.1016/j.rcim.2015.07.005

Google Scholar

[20] P. Minetola and M. Galati, A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts,, Addit. Manuf., vol. 22, no. March 2017, p.256–264, 2018,.

DOI: 10.1016/j.addma.2018.05.028

Google Scholar

[21] M. Mahesh, Y. S. Wong, J. Y. H. Fuh, and H. T. Loh, Benchmarking for comparative evaluation of RP systems and processes,, Rapid Prototyp. J., vol. 10, no. 2, p.123–135, 2004,.

DOI: 10.1108/13552540410526999

Google Scholar

[22] O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene,, Mater. Des., vol. 83, p.768–776, 2015,.

DOI: 10.1016/j.matdes.2015.06.053

Google Scholar

[23] A. Boschetto and L. Bottini, Accuracy prediction in fused deposition modeling,, Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, p.913–928, 2014,.

DOI: 10.1007/s00170-014-5886-4

Google Scholar

[24] M. A. Yardimci and S. Güçeri, Conceptual framework for the thermal process modelling of fused deposition,, Rapid Prototyp. J., vol. 2, no. 2, p.26–31, 1996, doi: 10.1108/ 13552549610128206.

DOI: 10.1108/13552549610128206

Google Scholar

[25] A. Kantaros and D. Karalekas, Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,, Mater. Des., vol. 50, p.44–50, 2013,.

DOI: 10.1016/j.matdes.2013.02.067

Google Scholar

[26] T. M. Wang, J. T. Xi, and Y. Jin, A model research for prototype warp deformation in the FDM process,, Int. J. Adv. Manuf. Technol., vol. 33, no. 11–12, p.1087–1096, 2007,.

DOI: 10.1007/s00170-006-0556-9

Google Scholar

[27] O. Diegel, A. Nordin, and D. Motte, Additive Manufacturing Technologies. (2019).

Google Scholar

[28] J. R. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, and R. C. Advincula, Post-Processing of 3D-Printed Polymers,, (2021).

DOI: 10.3390/technologies9030061

Google Scholar

[29] T. T. Zhu, A. J. Bushby, and D. J. Dunstan, Materials mechanical size effects: A review,, Mater. Technol., vol. 23, no. 4, p.193–209, 2008,.

Google Scholar