[1]
R. N. M. Delda, B. J. Tuazon, and J. R. C. Dizon, Assessment of Interfacial Adhesion of Adhesively Bonded 3D-Printed Thermoplastics,, Mater. Sci. Forum, vol. 1005, p.157–165, 2020,.
DOI: 10.4028/www.scientific.net/msf.1005.157
Google Scholar
[2]
A. H. Espera, J. R. C. Dizon, Q. Chen, and R. C. Advincula, 3D-printing and advanced manufacturing for electronics,, Prog. Addit. Manuf., vol. 4, no. 3, p.245–267, 2019,.
DOI: 10.1007/s40964-019-00077-7
Google Scholar
[3]
J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers,, Addit. Manuf., vol. 20, no. December, p.44–67, 2018,.
DOI: 10.1016/j.addma.2017.12.002
Google Scholar
[4]
M. T. Espino, B. J. Tuazon, G. S. Robles, and J. R. C. Dizon, Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers,, Mater. Sci. Forum, vol. 1005, p.166–173, 2020,.
DOI: 10.4028/www.scientific.net/msf.1005.166
Google Scholar
[5]
B. J. Tuazon, M. T. Espino, and J. R. C. Dizon, Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature,, Mater. Sci. Forum, vol. 1005, p.141–149, 2020,.
DOI: 10.4028/www.scientific.net/msf.1005.141
Google Scholar
[6]
J. R. R. Diego, D. W. C. Martinez, G. S. Robles, and J. R. C. Dizon, Development of Smartphone-Controlled Hand and Arm Exoskeleton for Persons with Disability,, Open Eng., vol. 11, no. 1, p.161–170, 2021,.
DOI: 10.1515/eng-2021-0016
Google Scholar
[7]
L. D. Tijing, J. R. C. Dizon, and G. G. C. Jr, 3D-Printed Absorbers for Solar-Driven Interfacial Water Evaporation : A Mini-Review,, vol. 3, no. 1, p.1–9, (2021).
DOI: 10.26877/asset.v3i1.8367
Google Scholar
[8]
S. Mouaci et al., Effect of Gamma Irradiation Dose on Space Charge in e-Beam Irradiated PET Films,, Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, vol. 2019-Octob, no. Limm, p.777–780, 2019,.
DOI: 10.1109/ceidp47102.2019.9009658
Google Scholar
[9]
R. N. M. Delda, R. B. Basuel, R. P. Hacla, D. W. C. Martinez, J.-J. Cabibihan, and J. R. C. Dizon, 3D Printing Polymeric Materials for Robots with Embedded Systems,, Technologies, p.1–26, 2021, doi: https://doi.org/10.3390/technologies9040082.
DOI: 10.3390/technologies9040082
Google Scholar
[10]
E. B. Caldona, J. R. C. Dizon, R. A. Viers, V. J. Garcia, Z. J. Smith, and R. C. Advincula, Additively manufactured high performance polymeric materials and their potential use in the oil and gas industry., (2017).
DOI: 10.1557/s43579-021-00134-9
Google Scholar
[11]
G. W. Melenka, J. S. Schofield, M. R. Dawson, and J. P. Carey, Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer,, Rapid Prototyp. J., vol. 21, no. 5, p.618–627, 2015,.
DOI: 10.1108/rpj-09-2013-0093
Google Scholar
[12]
M. M. Hanon, L. Zsidai, and Q. Ma, Accuracy investigation of 3D printed PLA with various process parameters and different colors,, Mater. Today Proc., vol. 42, p.3089–3096, 2021,.
DOI: 10.1016/j.matpr.2020.12.1246
Google Scholar
[13]
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,, Compos. Part B Eng., vol. 143, no. February, p.172–196, 2018,.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[14]
J. R. C. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. C. Advincula, 3D Printed Injection Molds Using Various 3D Printing Technologies,, Mater. Sci. Forum, vol. 1005, p.150–156, 2020,.
DOI: 10.4028/www.scientific.net/msf.1005.150
Google Scholar
[15]
J. Kechagias, P. Stavropoulos, A. Koutsomichalis, I. Ntintakis, and N. Vaxevanidis, Dimensional Accuracy Optimization of Prototypes produced by PolyJet Direct 3D Printing Technology,, p.61–65.
Google Scholar
[16]
M. N. Islam, B. Boswell, and A. Pramanik, An investigation of dimensional accuracy of parts produced by three-dimensional printing,, Lect. Notes Eng. Comput. Sci., vol. 1 LNECS, p.522–525, (2013).
Google Scholar
[17]
K. Tiwari and S. Kumar, Analysis of the factors affecting the dimensional accuracy of 3D printed products,, Mater. Today Proc., vol. 5, no. 9, p.18674–18680, 2018,.
DOI: 10.1016/j.matpr.2018.06.213
Google Scholar
[18]
A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Osman, Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering,, PLoS One, vol. 9, no. 9, p.1–14, 2014,.
DOI: 10.1371/journal.pone.0108252
Google Scholar
[19]
A. Boschetto and L. Bottini, Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling,, Robot. Comput. Integr. Manuf., vol. 37, p.103–114, 2016,.
DOI: 10.1016/j.rcim.2015.07.005
Google Scholar
[20]
P. Minetola and M. Galati, A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts,, Addit. Manuf., vol. 22, no. March 2017, p.256–264, 2018,.
DOI: 10.1016/j.addma.2018.05.028
Google Scholar
[21]
M. Mahesh, Y. S. Wong, J. Y. H. Fuh, and H. T. Loh, Benchmarking for comparative evaluation of RP systems and processes,, Rapid Prototyp. J., vol. 10, no. 2, p.123–135, 2004,.
DOI: 10.1108/13552540410526999
Google Scholar
[22]
O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene,, Mater. Des., vol. 83, p.768–776, 2015,.
DOI: 10.1016/j.matdes.2015.06.053
Google Scholar
[23]
A. Boschetto and L. Bottini, Accuracy prediction in fused deposition modeling,, Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, p.913–928, 2014,.
DOI: 10.1007/s00170-014-5886-4
Google Scholar
[24]
M. A. Yardimci and S. Güçeri, Conceptual framework for the thermal process modelling of fused deposition,, Rapid Prototyp. J., vol. 2, no. 2, p.26–31, 1996, doi: 10.1108/ 13552549610128206.
DOI: 10.1108/13552549610128206
Google Scholar
[25]
A. Kantaros and D. Karalekas, Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process,, Mater. Des., vol. 50, p.44–50, 2013,.
DOI: 10.1016/j.matdes.2013.02.067
Google Scholar
[26]
T. M. Wang, J. T. Xi, and Y. Jin, A model research for prototype warp deformation in the FDM process,, Int. J. Adv. Manuf. Technol., vol. 33, no. 11–12, p.1087–1096, 2007,.
DOI: 10.1007/s00170-006-0556-9
Google Scholar
[27]
O. Diegel, A. Nordin, and D. Motte, Additive Manufacturing Technologies. (2019).
Google Scholar
[28]
J. R. C. Dizon, C. C. L. Gache, H. M. S. Cascolan, L. T. Cancino, and R. C. Advincula, Post-Processing of 3D-Printed Polymers,, (2021).
DOI: 10.3390/technologies9030061
Google Scholar
[29]
T. T. Zhu, A. J. Bushby, and D. J. Dunstan, Materials mechanical size effects: A review,, Mater. Technol., vol. 23, no. 4, p.193–209, 2008,.
Google Scholar