Additive Manufacturing of Supercapacitor Electrodes – Materials, Methods and Design

Article Preview

Abstract:

Fabrication of supercapacitor (SC) electrodes plays a vital role in enhancing the electrochemical performance of SCs. Conventional fabrication techniques have limitations in fabricating the complex SC electrodes. The three-dimentional (3D) printing technique has several advantages over conventional manufacturing techniques that includes patterning capability, contact-less high-resolution, controlled material deposition, design flexibility, and multi-material compatibility. Due to these excellent qualities, considerable research efforts have been made in developing 3D printed SC electrodes. This review offers a literature update on the recent printing materials employed and the design aspects in making of SC electrodes. It also discusses the impact of critical parameters involved in various techniques of 3D printing of electrodes. Finally, the paper concludes with the scope and challenges in material/manufacturing of electrodes and the performance comparative analysis of various 3D printed structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-75

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Cao, Y. Zhao, Y. Xu, Y. Zhang, B. Zhang, H. Peng, Sticky-note supercapacitors, J. Mater. Chem. A. 6 (2018) 3355–3360.

DOI: 10.1039/c7ta10756k

Google Scholar

[2] Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong, F. Cheng, X. Lu, Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors, Small Methods. 2 (2018) 1700230–1700250.

DOI: 10.1002/smtd.201700230

Google Scholar

[3] W. Xu, Z. Jiang, Q. Yang, W. Huo, M.S. Javed, Y. Li, L. Huang, X. Gu, C. Hu, Approaching the lithium-manganese oxides' energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor, Nano Energy. 43 (2018) 168–176.

DOI: 10.1016/j.nanoen.2017.10.046

Google Scholar

[4] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in: Vincent Dusastre (Ed.), Mater. Sustain. Energy, Co-Published with Macmillan Publishers Ltd, UK, 2010: p.138–147.

Google Scholar

[5] M.M. Pérez-Madrigal, M.G. Edo, C. Alemán, Powering the future: Application of cellulose-based materials for supercapacitors, Green Chem. 18 (2016) 5930–5956.

DOI: 10.1039/c6gc02086k

Google Scholar

[6] L. Zeng, P. Li, Y. Yao, B. Niu, S. Niu, B. Xu, Recent progresses of 3D printing technologies for structural energy storage devices, Mater. Today Nano. 12 (2020) 100094.

DOI: 10.1016/j.mtnano.2020.100094

Google Scholar

[7] H.C. Chien, W.Y. Cheng, Y.H. Wang, S.Y. Lu, Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites, Adv. Funct. Mater. 22 (2012) 5038–5043.

DOI: 10.1002/adfm.201201176

Google Scholar

[8] Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Manganese oxide/carbon aerogel composite: An outstanding supercapacitor electrode material, Adv. Energy Mater. 1 (2011) 901–907.

DOI: 10.1002/aenm.201100256

Google Scholar

[9] B.K. Deka, A. Hazarika, J. Kim, Y. Bin Park, H.W. Park, Recent development and challenges of multifunctional structural supercapacitors for automotive industries, Int. J. Energy Res. 41 (2017) 1397–1411.

DOI: 10.1002/er.3707

Google Scholar

[10] C. Ji, H. Mi, S. Yang, Latest advances in supercapacitors: From new electrode materials to novel device designs, Kexue Tongbao/Chinese Sci. Bull. 64 (2019) 9–34.

DOI: 10.1360/n972018-00815

Google Scholar

[11] Technavio, Global Supercapacitor Market 2018-2022, (2018).

Google Scholar

[12] K.V.G. Raghavendra, R. Vinoth, K. Zeb, C.V.V. Muralee Gopi, S. Sambasivam, M.R. Kummara, I.M. Obaidat, H.J. Kim, An intuitive review of supercapacitors with recent progress and novel device applications, J. Energy Storage. 31 (2020) 101652.

DOI: 10.1016/j.est.2020.101652

Google Scholar

[13] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, in: Handb. Clean Energy Syst., John Wiley & Sons, Ltd, Chichester, UK, 2015: p.1–25.

DOI: 10.1002/9781118991978.hces112

Google Scholar

[14] P. Harrop, Supercapacitor Markets, Technology Roadmap, Opportunities 2021-2041, 2020. www.IDTechEx.com/Supercaps.

Google Scholar

[15] L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.

Google Scholar

[16] N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol. 12 (2017) 7–15.

DOI: 10.1038/nnano.2016.196

Google Scholar

[17] Z. Zhao, S. Wang, F. Wan, Z. Tie, Z. Niu, Scalable 3D Self-Assembly of MXene Films for Flexible Sandwich and Microsized Supercapacitors, Adv. Funct. Mater. 31 (2021) 2101302.

DOI: 10.1002/adfm.202101302

Google Scholar

[18] V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F.K. Shieh, K.C.W. Wu, K. Ariga, Y. Yamauchi, Templated synthesis for nanoarchitectured porous materials, Bull. Chem. Soc. Jpn. 88 (2015) 1171–1200.

DOI: 10.1246/bcsj.20150143

Google Scholar

[19] J. Du, Q. Cao, X. Tang, X. Xu, X. Long, J. Ding, C. Guan, W. Huang, 3D printing-assisted gyroidal graphite foam for advanced supercapacitors, Chem. Eng. J. 416 (2021) 127885.

DOI: 10.1016/j.cej.2020.127885

Google Scholar

[20] M. Beidaghi, C. Wang, Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes, Electrochim. Acta. 56 (2011) 9508–9514.

DOI: 10.1016/j.electacta.2011.08.054

Google Scholar

[21] T.P. Mofokeng, Z.N. Tetana, K.I. Ozoemena, Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics, Carbon N. Y. 169 (2020) 312–326.

DOI: 10.1016/j.carbon.2020.07.049

Google Scholar

[22] C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores, Nano Lett. 16 (2016) 3448–3456.

DOI: 10.1021/acs.nanolett.5b04965

Google Scholar

[23] Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai, P.I. Wu, R. Xiong, J. Shi, Y. Chen, Q. Zhou, K.K. Shung, Three dimensional printing of high dielectric capacitor using projection based stereolithography method, Nano Energy. 22 (2016) 414–421.

DOI: 10.1016/j.nanoen.2016.02.045

Google Scholar

[24] J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Q. Chen, R.C. Advincula, 3D printed injection molds using various 3D printing technologies, in: Mater. Sci. Forum, 2020: p.150–156.

DOI: 10.4028/www.scientific.net/msf.1005.150

Google Scholar

[25] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 172–196.

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[26] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today. 21 (2018) 22–37.

DOI: 10.1016/j.mattod.2017.07.001

Google Scholar

[27] A.H. Espera, J.R.C. Dizon, Q. Chen, R.C. Advincula, 3D-printing and advanced manufacturing for electronics, Prog. Addit. Manuf. 4 (2019) 245–267.

DOI: 10.1007/s40964-019-00077-7

Google Scholar

[28] F. Zhang, M. Wei, V. V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, 3D printing technologies for electrochemical energy storage, Nano Energy. 40 (2017) 418–431.

DOI: 10.1016/j.nanoen.2017.08.037

Google Scholar

[29] W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology, Nano Energy. 52 (2018) 441–473.

DOI: 10.1016/j.nanoen.2018.08.013

Google Scholar

[30] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.

DOI: 10.1039/c1cs15060j

Google Scholar

[31] Y.Z. Zhang, Y. Wang, T. Cheng, L.Q. Yao, X. Li, W.Y. Lai, W. Huang, Printed supercapacitors: Materials, printing and applications, Chem. Soc. Rev. 48 (2019) 3229.

DOI: 10.1039/c7cs00819h

Google Scholar

[32] X. Zhang, C. Jiang, J. Liang, W. Wu, Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage, J. Mater. Chem. A. 9 (2021) 8099–8128.

DOI: 10.1039/d0ta12299h

Google Scholar

[33] J. Liang, C. Jiang, W. Wu, Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications, Appl. Phys. Rev. 8 (2021) 021319.

DOI: 10.1063/5.0048446

Google Scholar

[34] Y. Zhang, H. xin Mei, Y. Cao, X. hua Yan, J. Yan, H. li Gao, H. wei Luo, S. wen Wang, X. dong Jia, L. Kachalova, J. Yang, S. chang Xue, C. gang Zhou, L. xia Wang, Y. hai Gui, Recent advances and challenges of electrode materials for flexible supercapacitors, Coord. Chem. Rev. 438 (2021) 213910.

DOI: 10.1016/j.ccr.2021.213910

Google Scholar

[35] Z. Wang, Q. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai, Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor, ACS Appl. Mater. Interfaces. 10 (2018) 10437–10444.

DOI: 10.1021/acsami.7b19635

Google Scholar

[36] T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, 3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities, Adv. Energy Mater. 9 (2019) 1802578.

DOI: 10.1002/aenm.201802578

Google Scholar

[37] Z. Stempien, M. Khalid, M. Kozicki, M. Kozanecki, H. Varela, P. Filipczak, R. Pawlak, E. Korzeniewska, E. Sąsiadek, In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications, Synth. Met. 256 (2019) 116144.

DOI: 10.1016/j.synthmet.2019.116144

Google Scholar

[38] J.M. Munuera, J.I. Paredes, M. Enterría, S. Villar-Rodil, A.G. Kelly, Y. Nalawade, J.N. Coleman, T. Rojo, N. Ortiz-Vitoriano, A. Martínez-Alonso, J.M.D. Tascón, High Performance Na-O2 Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene, ACS Appl. Mater. Interfaces. 12 (2020) 494–506.

DOI: 10.1021/acsami.9b15509

Google Scholar

[39] A. Tanwilaisiri, Y. Xu, R. Zhang, D. Harrison, J. Fyson, M. Areir, Design and fabrication of modular supercapacitors using 3D printing, J. Energy Storage. 16 (2018) 1–7.

DOI: 10.1016/j.est.2017.12.020

Google Scholar

[40] M. Idrees, S. Ahmed, Z. Mohammed, N.S. Korivi, V. Rangari, 3D printed supercapacitor using porous carbon derived from packaging waste, Addit. Manuf. 36 (2020) 101525.

DOI: 10.1016/j.addma.2020.101525

Google Scholar

[41] X. Chen, X. Wang, F. Liu, X. Song, H. Cui, Fabrication of NiO–ZnO-modified g-C3N4 hierarchical composites for high-performance supercapacitors, Vacuum. 178 (2020) 109453.

DOI: 10.1016/j.vacuum.2020.109453

Google Scholar

[42] C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives, Nanoscale Adv. 1 (2019) 4644–4658.

DOI: 10.1039/c9na00543a

Google Scholar

[43] C. qi YI, J. peng ZOU, H. zhi YANG, X. LENG, Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides, Trans. Nonferrous Met. Soc. China (English Ed. 28 (2018) 1980–(2001).

DOI: 10.1016/s1003-6326(18)64843-5

Google Scholar

[44] M.A.A. Mohd Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors, Mater. Des. 186 (2020) 108199.

DOI: 10.1016/j.matdes.2019.108199

Google Scholar

[45] T.N. Jebakumar Immanuel Edison, R. Atchudan, Y.R. Lee, Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction, Int. J. Hydrogen Energy. 44 (2019) 2323–2329.

DOI: 10.1016/j.ijhydene.2018.02.018

Google Scholar

[46] H. Chen, X. Du, J. Sun, R. Wu, Y. Wang, C. Xu, Template-free synthesis of novel Co3O4 micro-bundles assembled with flakes for high-performance hybrid supercapacitors, Ceram. Int. 47 (2021) 716–724.

DOI: 10.1016/j.ceramint.2020.08.181

Google Scholar

[47] K. Shen, J. Ding, S. Yang, 3D Printing Quasi-Solid-State Asymmetric Micro-Supercapacitors with Ultrahigh Areal Energy Density, Adv. Energy Mater. 8 (2018) 1800408.

DOI: 10.1002/aenm.201800408

Google Scholar

[48] E. Samuel, B. Joshi, Y. Il Kim, A. Aldalbahi, M. Rahaman, S.S. Yoon, ZnO/MnOx Nanoflowers for High-Performance Supercapacitor Electrodes, ACS Sustain. Chem. Eng. 8 (2020) 3697–3708.

DOI: 10.1021/acssuschemeng.9b06796

Google Scholar

[49] P. Giannakou, M.O. Tas, B. Le Borgne, M. Shkunov, Water-Transferred, Inkjet-Printed Supercapacitors toward Conformal and Epidermal Energy Storage, ACS Appl. Mater. Interfaces. 12 (2020) 8456–8465.

DOI: 10.1021/acsami.9b21283

Google Scholar

[50] B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO 2 Loading, Joule. 3 (2019) 459–470.

DOI: 10.1016/j.joule.2018.09.020

Google Scholar

[51] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy. 36 (2017) 268–285.

DOI: 10.1016/j.nanoen.2017.04.040

Google Scholar

[52] M.M. Ovhal, N. Kumar, J.W. Kang, 3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors, Mol. Cryst. Liq. Cryst. 705 (2020) 105–111.

DOI: 10.1080/15421406.2020.1743426

Google Scholar

[53] ISO/ASTM52900-15, Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM Int. West Conshohocken, PA, Www.Astm.Org. (2015).

Google Scholar

[54] V. Egorov, U. Gulzar, Y. Zhang, S. Breen, C. O'Dwyer, Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage, Adv. Mater. 32 (2020) 2000556.

DOI: 10.1002/adma.202000556

Google Scholar

[55] M. Cheng, R. Deivanayagam, R. Shahbazian‐Yassar, 3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures, Batter. Supercaps. 3 (2020) 130–146.

DOI: 10.1002/batt.201900130

Google Scholar

[56] D.M. Soares, Z. Ren, S. Bin Mujib, S. Mukherjee, C.G. Martins Real, M. Anstine, H. Zanin, G. Singh, Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes, Adv. Energy Sustain. Res. 2 (2021) 2000111.

DOI: 10.1002/aesr.202000111

Google Scholar

[57] J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf. 20 (2018) 44–67.

DOI: 10.1016/j.addma.2017.12.002

Google Scholar

[58] A. Sajedi-Moghaddam, E. Rahmanian, N. Naseri, Inkjet-printing technology for supercapacitor application: Current state and perspectives, ACS Appl. Mater. Interfaces. 12 (2020) 34487–34504.

DOI: 10.1021/acsami.0c07689

Google Scholar

[59] B. Derby, Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution, Annu. Rev. Mater. Res. 40 (2010) 395–414.

DOI: 10.1146/annurev-matsci-070909-104502

Google Scholar

[60] Y. Lin, J. Chen, M.M. Tavakoli, Y. Gao, Y. Zhu, D. Zhang, M. Kam, Z. He, Z. Fan, Printable Fabrication of a Fully Integrated and Self-Powered Sensor System on Plastic Substrates, Adv. Mater. 31 (2019) 1804285.

DOI: 10.1002/adma.201804285

Google Scholar

[61] X. Li, R. Chen, Y. Zhao, Q. Liu, J. Liu, J. Yu, J. Li, P. Liu, J. Li, J. Wang, Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors, Chem. Eng. J. 375 (2019) 121988.

DOI: 10.1016/j.cej.2019.121988

Google Scholar

[62] S. Sollami Delekta, M. Östling, J. Li, Wet transfer of inkjet printed graphene for microsupercapacitors on arbitrary substrates, ACS Appl. Energy Mater. 2 (2019) 158–163.

DOI: 10.1021/acsaem.8b01225

Google Scholar

[63] V.G. Rocha, E. Saiz, I.S. Tirichenko, E. García-Tuñón, Direct ink writing advances in multi-material structures for a sustainable future, J. Mater. Chem. A. 8 (2020) 15646–15657.

DOI: 10.1039/d0ta04181e

Google Scholar

[64] K.K.B. Hon, L. Li, I.M. Hutchings, Direct writing technology-Advances and developments, CIRP Ann. - Manuf. Technol. 57 (2008) 601-620.

DOI: 10.1016/j.cirp.2008.09.006

Google Scholar

[65] M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices, J. Power Sources. 354 (2017) 134–147.

DOI: 10.1016/j.jpowsour.2017.04.042

Google Scholar

[66] M. Cheng, A. Ramasubramanian, M.G. Rasul, Y. Jiang, Y. Yuan, T. Foroozan, R. Deivanayagam, M. Tamadoni Saray, R. Rojaee, B. Song, V.R. Yurkiv, Y. Pan, F. Mashayek, R. Shahbazian-Yassar, Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities, Adv. Funct. Mater. 31 (2021) 2006683.

DOI: 10.1002/adfm.202006683

Google Scholar

[67] W. Yu, H. Zhou, B.Q. Li, S. Ding, 3D Printing of Carbon Nanotubes-Based Microsupercapacitors, ACS Appl. Mater. Interfaces. 9 (2017) 4597–4604.

DOI: 10.1021/acsami.6b13904

Google Scholar

[68] K. Tang, H. Ma, Y. Tian, Z. Liu, H. Jin, S. Hou, K. Zhou, X. Tian, 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours, Virtual Phys. Prototyp. 15 (2020) 511–519.

DOI: 10.1080/17452759.2020.1842619

Google Scholar

[69] Y. Wang, Y. Shi, Y. Gu, P. Xue, X. Xu, Self-healing and highly stretchable hydrogel for interfacial compatible flexible paper-based micro-supercapacitor, Materials (Basel). 14 (2021) 1852.

DOI: 10.3390/ma14081852

Google Scholar

[70] F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B Eng. 80 (2015) 369–378.

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[71] A. Maurel, M. Courty, B. Fleutot, H. Tortajada, K. Prashantha, M. Armand, S. Grugeon, S. Panier, L. Dupont, Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing, Chem. Mater. 30 (2018) 7484–7493.

DOI: 10.1021/acs.chemmater.8b02062

Google Scholar

[72] H.H. Bin Hamzah, O. Keattch, D. Covill, B.A. Patel, The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes, Sci. Rep. 8 (2018) 9135.

DOI: 10.1038/s41598-018-27188-5

Google Scholar

[73] J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou, W. Wang, Y. Lu, Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor, Nano-Micro Lett. 11 (2019) 46.

DOI: 10.1007/s40820-019-0280-2

Google Scholar

[74] S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss, D.E.J. Armstrong, D. Cai, R.J. Wallace, F.H. Richter, J.H.J. Thijssen, P.G. Bruce, Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries, Energy Environ. Sci. 11 (2018) 185–201.

DOI: 10.1039/c7ee02723k

Google Scholar

[75] Q. Chen, R. Xu, Z. He, K. Zhao, L. Pan, Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography, J. Electrochem. Soc. 164 (2017) A1852.

DOI: 10.1149/2.0651709jes

Google Scholar

[76] J.P. Mensing, T. Lomas, A. Tuantranont, 2D and 3D printing for graphene based supercapacitors and batteries: A review, Sustain. Mater. Technol. 25 (2020) e00190.

DOI: 10.1016/j.susmat.2020.e00190

Google Scholar

[77] S.H. Park, M. Kaur, D. Yun, W.S. Kim, Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices, Langmuir. 34 (2018) 10897–10904.

DOI: 10.1021/acs.langmuir.8b02404

Google Scholar

[78] P. Chang, H. Mei, Y. Tan, Y. Zhao, W. Huang, L. Cheng, A 3D-printed stretchable structural supercapacitor with active stretchability/flexibility and remarkable volumetric capacitance, J. Mater. Chem. A. 8 (2020) 13646–13658.

DOI: 10.1039/d0ta04460a

Google Scholar

[79] A. García-Miranda Ferrari, J.L. Pimlott, M.P. Down, S.J. Rowley-Neale, C.E. Banks, MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms, Adv. Energy Mater. 11 (2021) 2100433.

DOI: 10.1002/aenm.202100433

Google Scholar

[80] J. Wang, F. Li, F. Zhu, O.G. Schmidt, Recent Progress in Micro-Supercapacitor Design, Integration, and Functionalization, Small Methods. 3 (2019) 1800367.

DOI: 10.1002/smtd.201800367

Google Scholar

[81] U. Gulzar, C. Glynn, C. O'Dwyer, Additive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors, Curr. Opin. Electrochem. 20 (2020) 46–53.

DOI: 10.1016/j.coelec.2020.02.009

Google Scholar

[82] M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci. 7 (2014) 867–884.

DOI: 10.1039/c3ee43526a

Google Scholar

[83] N. Liu, Y. Gao, Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture, Small. 13 (2017).

DOI: 10.1002/smll.201701989

Google Scholar

[84] D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen, Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges, Adv. Mater. 29 (2017) 1602802.

DOI: 10.1002/adma.201602802

Google Scholar

[85] X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review, Adv. Energy Mater. 7 (2017) 1700127.

DOI: 10.1002/aenm.201700127

Google Scholar

[86] T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene-based inks for printing of planar micro-supercapacitors: A review, Mater. 12 (2019) 978.

DOI: 10.3390/ma12060978

Google Scholar

[87] M.R. Hartings, Z. Ahmed, Chemistry from 3D printed objects, Nat. Rev. Chem. 3 (2019) 305–314.

DOI: 10.1038/s41570-019-0097-z

Google Scholar