Numerical Characterization of the Mechanics of Bézier-Based Lattice-Beams

Article Preview

Abstract:

Metamaterials are controlled arrangements of material structures in which their mechanical properties can be tailored by tuning their geometrical parameters. A parametrization based on cubic Bézier curves is employed here to generate cantilever lattice-beams by changing the position of a free control point. The apparent stiffness of these lattice-beams is numerically analyzed by means of tensile, bending, and free vibration simulations. Results expose the influence of shear deformation in the mechanical behavior of beams made from a cellular material; different degrees of variation depending on the loading conditions and lattice topology are observed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-306

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Nazir, K. M. Abate, A. Kumar and J. Y. Jeng: Int. J. Adv. Manuf. Tech. 104 (2019), p.3849.

Google Scholar

[2] K. Refai, M. Montemurro, C. Brugger and N. Saintier: Mech. Adv. Mater. Struct. 27 (2019), p. (1966).

Google Scholar

[3] D. Bhate, C. A. Penick, L. A. Ferry and C. Lee: Designs 3 (2019), p.19.

Google Scholar

[4] L. J. Gibson, M. F. Ashby, G. S. Schajer and C. I. Robertson: P. Roy. Soc. Lond. A Mat. 382 (1982), p.43.

Google Scholar

[5] M. Teimouri, M. Mahbod and M. Asgari Structures 29 (2021), p.549.

Google Scholar

[6] W. C. Young and R. G. Budynas: Roark's formulas for stress and strain (Mc GrawHill, United States 2002).

Google Scholar

[7] Z. Guo, G. Hu, V. Sorokin, L. Tang, X. Yang and J. Zhang: Wave Motion 104 (2021), p.102750.

Google Scholar

[8] L. Meng, X. Qiu, T. Gao, Z. Li and W. Zhang: Compos. Struct. 247 (2020), p.112363.

Google Scholar

[9] H. Gu, A.D. Shaw, M. Amoozgar, J. Zhang, C. Wang, and M. Friswell: Compos. Struct. 254 (2020), p.112855.

Google Scholar

[10] Y. B. Wang, H. T. Liu and T. J. Li: Compos. Struct. 267 (2021), p.113857.

Google Scholar

[11] S. Banerjee and A. Bhaskar: J. Sound Vib. 267 (2005), p.77.

Google Scholar

[12] W. Su and S. Liu: Int. J. Solids Struct. 51 (2014), p.2676.

Google Scholar

[13] E. Cuan-Urquizo and A. Bhaskar: Eur. J. Mech. A-Solid 67 (2018), p.187.

Google Scholar

[14] L. Liu, W. Yang, Y. Chai and G. Zhai: Arch. Appl. Mech. 91 (2021), p.2601.

Google Scholar

[15] A. Álvarez-Trejo, E. Cuan-Urquizo, A. Roman-Flores, L. G. Trapaga-Martinez and J. M. Alvarado-Orozco Mater. Design 199 (2021), p.109412.

DOI: 10.1016/j.matdes.2020.109412

Google Scholar

[16] D. R. Askeland, P. P. Fulay and W. J. W. Wright: The Science and Engineering of Materials (Cengage, United States 2010).

Google Scholar

[17] C. Chinwuba Ike: TECNICA ITALIANA-Italian Journal of Engineering Science 63 (2019), p.34.

Google Scholar

[18] Y. Chen, T. Li, F. Scarpa and L. Wang: Phys. Rev. Appl. 7 (2017), p.24012.

Google Scholar