[1]
C. Briens, J. Piskorz, F. Berruti, Biomass valorization for fuel and chemicals production--A review, Int. J. Chem. React. 6 (2008).
DOI: 10.2202/1542-6580.1674
Google Scholar
[2]
C. Domeno, C. Nerın, Fate of polyaromatic hydrocarbons in the pyrolysis of industrial waste oils, J. Anal. Appl. 67 (2003) 237-46.
Google Scholar
[3]
K.K. Ramasamy, T. Ali, Hydrogen production from used lubricating oils, Catal. Today. 129 (2007) 365-71.
DOI: 10.1016/j.cattod.2006.09.037
Google Scholar
[4]
M. Lázaro, R. Moliner, I. Suelves, C. Nerín, C. Domeño, Valuable products from mineral waste oils containing heavy metals, Environ. Sci. Technol. 34 (2000) 3205-10.
DOI: 10.1021/es9905546
Google Scholar
[5]
S.Y. Foong, Y.H. Chan, W.Y. Cheah, N.H. Kamaludin, T.N.B.T. Ibrahim, C. Sonne, et al., Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production, Bioresour. Technol. (2020) 124299.
DOI: 10.1016/j.biortech.2020.124299
Google Scholar
[6]
S.S. Idris, M.I. Zailan, N. Azron, N.A. Rahman, Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics, Int. J. Renew. Energy Dev. 10 (2021).
DOI: 10.14710/ijred.2021.33101
Google Scholar
[7]
S.Y. Foong, N.S.A. Latiff, R.K. Liew, P.N.Y. Yek, S.S. Lam, Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem, Mater. Sci. Technol. 3 (2020) 728-33.
DOI: 10.1016/j.mset.2020.08.002
Google Scholar
[8]
S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N.Y. Yek, W.A.W. Mahari, et al., Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions, Chem. Eng. J. 389 (2020) 124401.
DOI: 10.1016/j.cej.2020.124401
Google Scholar
[9]
W.A.W. Mahari, C.T. Chong, W.H. Lam, T.N.S.T. Anuar, N.L. Ma, M.D. Ibrahim, et al., Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment, Energy Convers. Manag. 171 (2018) 1292-301.
DOI: 10.1016/j.enconman.2018.06.073
Google Scholar
[10]
Z. Xiong, H. Han, M.M. Azis, X. Hu, Y. Wang, S. Su, et al., Formation of the heavy tar during bio-oil pyrolysis: A study based on Fourier transform ion cyclotron resonance mass spectrometry, Fuel. 239 (2019) 108-16.
DOI: 10.1016/j.fuel.2018.10.151
Google Scholar
[11]
R.K. Liew, W.L. Nam, M.Y. Chong, X.Y. Phang, M.H. Su, P.N.Y. Yek, et al., Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications, Process Saf. Environ. Prot. 115 (2018) 57-69.
DOI: 10.1016/j.psep.2017.10.005
Google Scholar
[12]
Y. Shen, D. Ma, X. Ge, CO 2-looping in biomass pyrolysis or gasification, Sustain. Energy Fuels. 1 (2017) 1700-29.
DOI: 10.1039/c7se00279c
Google Scholar
[13]
E.E. Kwon, S.-H. Cho, S. Kim, Synergetic sustainability enhancement via utilization of carbon dioxide as carbon neutral chemical feedstock in the thermo-chemical processing of biomass, Environ. Sci. Technol. 49 (2015) 5028-34.
DOI: 10.1021/es505744n
Google Scholar
[14]
J. Kim, K.-H. Kim, E.E. Kwon, Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2, Energy. 100 (2016) 51-7.
DOI: 10.1016/j.energy.2016.01.075
Google Scholar
[15]
J. Lee, J.-I. Oh, Y.S. Ok, E.E. Kwon, Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2, Energy. 137 (2017) 510-7.
DOI: 10.1016/j.energy.2017.01.155
Google Scholar
[16]
S.-H. Cho, J. Lee, K.-H. Kim, Y.J. Jeon, E.E. Kwon, Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass, Energy Convers. Manag. 118 (2016) 243-52.
DOI: 10.1016/j.enconman.2016.03.093
Google Scholar
[17]
J. Kim, J. Lee, K.-H. Kim, Y.S. Ok, Y.J. Jeon, E.E. Kwon, Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium, Appl. Therm. Eng. 110 (2017) 335-45.
DOI: 10.1016/j.applthermaleng.2016.08.200
Google Scholar
[18]
V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass, Fuel Processing Technology. 70 (2001) 53-61.
DOI: 10.1016/s0378-3820(00)00153-3
Google Scholar
[19]
N. Özbay, E. Apaydın-Varol, B.B. Uzun, A.E. Pütün, Characterization of bio-oil obtained from fruit pulp pyrolysis, Energy. 33 (2008) 1233-40.
DOI: 10.1016/j.energy.2008.04.006
Google Scholar
[20]
S.Y. Foong, R.K. Liew, C.L. Lee, W.P. Tan, W. Peng, C. Sonne, et al., Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products, J. Hazard. Mater. 421 (2022) 126774.
DOI: 10.1016/j.jhazmat.2021.126774
Google Scholar
[21]
M.E. Himmel, S.-Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, et al., Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science. 315 (2007) 804-7.
DOI: 10.1126/science.1137016
Google Scholar
[22]
M.I. Jahirul, M.G. Rasul, A.A. Chowdhury, N. Ashwath, Biofuels production through biomass pyrolysis—a technological review, Energies. 5 (2012) 4952-5001.
DOI: 10.3390/en5124952
Google Scholar
[23]
S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, et al., Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Clean. Prod. 162 (2017) 1376-87.
DOI: 10.1016/j.jclepro.2017.06.131
Google Scholar
[24]
S.S. Lam, R.K. Liew, X.Y. Lim, F.N. Ani, A. Jusoh, Fruit waste as feedstock for recovery by pyrolysis technique, Int. Biodeterior. Biodegradation. 113 (2016) 325-33.
DOI: 10.1016/j.ibiod.2016.02.021
Google Scholar
[25]
J. Pallarés, A. González-Cencerrado, I. Arauzo, Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam, Biomass Bioenerg. 115 (2018) 64-73.
DOI: 10.1016/j.biombioe.2018.04.015
Google Scholar
[26]
P.N.Y. Yek, W. Peng, C.C. Wong, R.K. Liew, Y.L. Ho, W.A.W. Mahari, et al., Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye, J. Hazard. Mater. 395 (2020) 122636.
DOI: 10.1016/j.jhazmat.2020.122636
Google Scholar
[27]
E.E. Kwon, E.-C. Jeon, M.J. Castaldi, Y.J. Jeon, Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass, Environ. Sci. Technol. 47 (2013) 10541-7.
DOI: 10.1021/es402250g
Google Scholar
[28]
V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass, Fuel Process. Technol. (2001) 53–61.
DOI: 10.1016/s0378-3820(00)00153-3
Google Scholar
[29]
S. Jamilatun, A. Yuliestyan, H. Hadiyanto, A. Budiman, Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues, Int. J. Renew. Energy Dev. 8 (2019).
DOI: 10.14710/ijred.8.2.133-140
Google Scholar
[30]
Y. Zhu, J. Gao, Y. Li, F. Sun, J. Gao, S. Wu, et al., Preparation of activated carbons for SO2 adsorption by CO2 and steam activation, J. Taiwan Inst. Chem. Eng. (2011) 112-9.
DOI: 10.1016/j.jtice.2011.06.009
Google Scholar