Microwave Pyrolysis Combined with CO2 and Steam as Potential Approach for Waste Valorization

Article Preview

Abstract:

Microwave pyrolysis combined with CO2 and steam environment is investigated for its feasibility as an alternative method for waste disposal. The combined use of CO2 and steam under microwave radiation created a synergistic effect in enhancing the thermal cracking of waste material during pyrolysis. The motivation of using CO2 is to replace N2 as carrier gas during pyrolysis as an effort to reduce the production of potent greenhouse gas. In this study, different types of microwave pyrolysis are performed including conventional, CO2 and CO2+steam on waste particleboard. It was found that the utilization of steam and CO2 affect the final pyrolytic products yield and composition. Incorporating CO2 and steam in microwave pyrolysis decreased the yield of char by 33% but increased the yield of bio-oil by 108%. Biochar obtained under CO2 showed well-developed and cleaner pore structure compared to biochar produced under N2. Our results demonstrate that the utilization of CO2 and steam in microwave pyrolysis shows great potential to convert wastes into value-added char and bio-oil with desirable properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Briens, J. Piskorz, F. Berruti, Biomass valorization for fuel and chemicals production--A review, Int. J. Chem. React. 6 (2008).

DOI: 10.2202/1542-6580.1674

Google Scholar

[2] C. Domeno, C. Nerın, Fate of polyaromatic hydrocarbons in the pyrolysis of industrial waste oils, J. Anal. Appl. 67 (2003) 237-46.

Google Scholar

[3] K.K. Ramasamy, T. Ali, Hydrogen production from used lubricating oils, Catal. Today. 129 (2007) 365-71.

DOI: 10.1016/j.cattod.2006.09.037

Google Scholar

[4] M. Lázaro, R. Moliner, I. Suelves, C. Nerín, C. Domeño, Valuable products from mineral waste oils containing heavy metals, Environ. Sci. Technol. 34 (2000) 3205-10.

DOI: 10.1021/es9905546

Google Scholar

[5] S.Y. Foong, Y.H. Chan, W.Y. Cheah, N.H. Kamaludin, T.N.B.T. Ibrahim, C. Sonne, et al., Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production, Bioresour. Technol. (2020) 124299.

DOI: 10.1016/j.biortech.2020.124299

Google Scholar

[6] S.S. Idris, M.I. Zailan, N. Azron, N.A. Rahman, Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics, Int. J. Renew. Energy Dev. 10 (2021).

DOI: 10.14710/ijred.2021.33101

Google Scholar

[7] S.Y. Foong, N.S.A. Latiff, R.K. Liew, P.N.Y. Yek, S.S. Lam, Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem, Mater. Sci. Technol. 3 (2020) 728-33.

DOI: 10.1016/j.mset.2020.08.002

Google Scholar

[8] S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N.Y. Yek, W.A.W. Mahari, et al., Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions, Chem. Eng. J. 389 (2020) 124401.

DOI: 10.1016/j.cej.2020.124401

Google Scholar

[9] W.A.W. Mahari, C.T. Chong, W.H. Lam, T.N.S.T. Anuar, N.L. Ma, M.D. Ibrahim, et al., Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment, Energy Convers. Manag. 171 (2018) 1292-301.

DOI: 10.1016/j.enconman.2018.06.073

Google Scholar

[10] Z. Xiong, H. Han, M.M. Azis, X. Hu, Y. Wang, S. Su, et al., Formation of the heavy tar during bio-oil pyrolysis: A study based on Fourier transform ion cyclotron resonance mass spectrometry, Fuel. 239 (2019) 108-16.

DOI: 10.1016/j.fuel.2018.10.151

Google Scholar

[11] R.K. Liew, W.L. Nam, M.Y. Chong, X.Y. Phang, M.H. Su, P.N.Y. Yek, et al., Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications, Process Saf. Environ. Prot. 115 (2018) 57-69.

DOI: 10.1016/j.psep.2017.10.005

Google Scholar

[12] Y. Shen, D. Ma, X. Ge, CO 2-looping in biomass pyrolysis or gasification, Sustain. Energy Fuels. 1 (2017) 1700-29.

DOI: 10.1039/c7se00279c

Google Scholar

[13] E.E. Kwon, S.-H. Cho, S. Kim, Synergetic sustainability enhancement via utilization of carbon dioxide as carbon neutral chemical feedstock in the thermo-chemical processing of biomass, Environ. Sci. Technol. 49 (2015) 5028-34.

DOI: 10.1021/es505744n

Google Scholar

[14] J. Kim, K.-H. Kim, E.E. Kwon, Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2, Energy. 100 (2016) 51-7.

DOI: 10.1016/j.energy.2016.01.075

Google Scholar

[15] J. Lee, J.-I. Oh, Y.S. Ok, E.E. Kwon, Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2, Energy. 137 (2017) 510-7.

DOI: 10.1016/j.energy.2017.01.155

Google Scholar

[16] S.-H. Cho, J. Lee, K.-H. Kim, Y.J. Jeon, E.E. Kwon, Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass, Energy Convers. Manag. 118 (2016) 243-52.

DOI: 10.1016/j.enconman.2016.03.093

Google Scholar

[17] J. Kim, J. Lee, K.-H. Kim, Y.S. Ok, Y.J. Jeon, E.E. Kwon, Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium, Appl. Therm. Eng. 110 (2017) 335-45.

DOI: 10.1016/j.applthermaleng.2016.08.200

Google Scholar

[18] V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass, Fuel Processing Technology. 70 (2001) 53-61.

DOI: 10.1016/s0378-3820(00)00153-3

Google Scholar

[19] N. Özbay, E. Apaydın-Varol, B.B. Uzun, A.E. Pütün, Characterization of bio-oil obtained from fruit pulp pyrolysis, Energy. 33 (2008) 1233-40.

DOI: 10.1016/j.energy.2008.04.006

Google Scholar

[20] S.Y. Foong, R.K. Liew, C.L. Lee, W.P. Tan, W. Peng, C. Sonne, et al., Strategic hazard mitigation of waste furniture boards via pyrolysis: Pyrolysis behavior, mechanisms, and value-added products, J. Hazard. Mater. 421 (2022) 126774.

DOI: 10.1016/j.jhazmat.2021.126774

Google Scholar

[21] M.E. Himmel, S.-Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, et al., Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science. 315 (2007) 804-7.

DOI: 10.1126/science.1137016

Google Scholar

[22] M.I. Jahirul, M.G. Rasul, A.A. Chowdhury, N. Ashwath, Biofuels production through biomass pyrolysis—a technological review, Energies. 5 (2012) 4952-5001.

DOI: 10.3390/en5124952

Google Scholar

[23] S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, et al., Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Clean. Prod. 162 (2017) 1376-87.

DOI: 10.1016/j.jclepro.2017.06.131

Google Scholar

[24] S.S. Lam, R.K. Liew, X.Y. Lim, F.N. Ani, A. Jusoh, Fruit waste as feedstock for recovery by pyrolysis technique, Int. Biodeterior. Biodegradation. 113 (2016) 325-33.

DOI: 10.1016/j.ibiod.2016.02.021

Google Scholar

[25] J. Pallarés, A. González-Cencerrado, I. Arauzo, Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam, Biomass Bioenerg. 115 (2018) 64-73.

DOI: 10.1016/j.biombioe.2018.04.015

Google Scholar

[26] P.N.Y. Yek, W. Peng, C.C. Wong, R.K. Liew, Y.L. Ho, W.A.W. Mahari, et al., Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye, J. Hazard. Mater. 395 (2020) 122636.

DOI: 10.1016/j.jhazmat.2020.122636

Google Scholar

[27] E.E. Kwon, E.-C. Jeon, M.J. Castaldi, Y.J. Jeon, Effect of carbon dioxide on the thermal degradation of lignocellulosic biomass, Environ. Sci. Technol. 47 (2013) 10541-7.

DOI: 10.1021/es402250g

Google Scholar

[28] V. Minkova, M. Razvigorova, E. Bjornbom, R. Zanzi, T. Budinova, N. Petrov, Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass, Fuel Process. Technol. (2001) 53–61.

DOI: 10.1016/s0378-3820(00)00153-3

Google Scholar

[29] S. Jamilatun, A. Yuliestyan, H. Hadiyanto, A. Budiman, Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues, Int. J. Renew. Energy Dev. 8 (2019).

DOI: 10.14710/ijred.8.2.133-140

Google Scholar

[30] Y. Zhu, J. Gao, Y. Li, F. Sun, J. Gao, S. Wu, et al., Preparation of activated carbons for SO2 adsorption by CO2 and steam activation, J. Taiwan Inst. Chem. Eng. (2011) 112-9.

DOI: 10.1016/j.jtice.2011.06.009

Google Scholar