Measurement of Surface Tension/Contact Angle of Saturated Fatty Solution for Developing In Situ Forming Drug Delivery Systems

Article Preview

Abstract:

Naturally-occurring saturated fatty acids have been classified as the interesting biomaterials. Typically, the interfacial tension and wettability relying on intermolecular forces relate to the well-fitted performance with any target sites of in situ forming matrix. This research aimed to determine surface tension/contact angle of several saturated fatty acids in selected aprotic solvents commonly used in in situ forming system by varying fatty acid concentrations and molecular weights. Six fatty acids were dissolved in the aprotic solvents, namely 2-pyrrolidone (PYR), N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO). As fatty acid concentrations in binary mixtures increased, surface tension and contact angle became diminished except where DMSO was used as a solvent. The longer chain of fatty acid, the lower the surface tension except when C14-16 fatty acid was dissolved in NMP. Contact angle was also decreased as the chain of fatty acid increased except for C14-16 fatty acid-based preparation due to their viscosity. Understanding these fatty acid solution's surface tension/contact angle behaviors is useful for designing the suitable fatty acid-based in situ forming system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Phaechamud, J. Mahadlek, S. Tuntarawongsa, Peppermint oil/doxycycline hyclate-loaded Eudragit RS in situ forming gel for periodontitis treatment, J. Pharm. Investig. 48 (2018) 451-464.

DOI: 10.1007/s40005-017-0340-x

Google Scholar

[2] J.H. Guo, G.W. Skinner, W.W. Harcum, P.E. Barnum, Pharmaceutical applications of naturally occurring water-soluble polymers, Pharm. Sci. Technol. Today. 1 (1998) 254-261.

DOI: 10.1016/s1461-5347(98)00072-8

Google Scholar

[3] R. Sheshala, G.C. Hong, W.P. Yee, V.S. Meka, R.R.S. Thakur, In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide, Drug Deliv. Translat. Res. 9 (2019) 534-542.

DOI: 10.1007/s13346-018-0491-y

Google Scholar

[4] T. Phaechamud, S. Senarat, N. Puyathorn, P. Praphanwittaya, Solvent exchange and drug release characteristics of doxycycline hyclate-loaded bleached shellac in situ-forming gel and -microparticle, Int. J. Biol. Macromol. 135 (2019) 1261-1272.

DOI: 10.1016/j.ijbiomac.2018.11.098

Google Scholar

[5] N. Storozhylova, J. Crecente-Campo, D. Cabaleiro, L. Lugo, C. Dussouy, S. Simões, et al., An in situ hyaluronic acid-fibrin hydrogel containing drug-loaded nanocapsules for intra-articular treatment of inflammatory joint diseases, Regen. Eng. Transl. Med. 6 (2020) 201-216.

DOI: 10.1007/s40883-020-00154-2

Google Scholar

[6] L. Wang, A. Wang, X. Zhao, X. Liu, D. Wang, F. Sun, et al., Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism, Int. J. Pharm. 427 (2012) 284-292.

DOI: 10.1016/j.ijpharm.2012.02.015

Google Scholar

[7] T. Srichan, T. Phaechamud, Designing solvent exchange-induced in situ forming gel from aqueous insoluble polymers as matrix base for periodontitis treatment, AAPS J. 18 (2017) 194-201.

DOI: 10.1208/s12249-016-0507-1

Google Scholar

[8] T. Chantadee, P. Sawangsri, W. Santimaleeworagun, T. Phaechamud, Vancomycin hydrochloride-loaded stearic acid/lauric acid in situ forming matrix for antimicrobial inhibition in patients with joint infection after total knee arthroplasty, Mater. Sci. Eng. C. 115 (2020) 110761.

DOI: 10.1016/j.msec.2020.110761

Google Scholar

[9] T. Chantadee, W. Santimaleeworagun, Y. Phorom, T. Chuenbarn, T. Phaechamud, Vancomycin HCl-loaded lauric acid in situ-forming gel with phase inversion for periodontitis treatment, J. Drug Deliv. Sci. Technol. 57 (2020) 101615.

DOI: 10.1016/j.jddst.2020.101615

Google Scholar

[10] N. Fattahi, M.A. Shahbazi, A. Maleki, M. Hamidi, A. Ramazani, H.A. Santos, Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines, J. Control. Release. 326 (2020) 556-598.

DOI: 10.1016/j.jconrel.2020.07.012

Google Scholar

[11] T. Chantadee, J. Sirirak, T. Hoshino, T. Phaechamud, Augmentative molecular aspect for phase inversion of vancomycin hydrochloride-loaded fatty acid in situ forming matrices, Mater. Des. 199 (2021) 109429.

DOI: 10.1016/j.matdes.2020.109429

Google Scholar

[12] T. Phaechamud, C. Savedkairop, Contact angle and surface tension of some solvents used in pharmaceuticals, Res. J. Pharm. Biol. Chem. Sci. 3(4) (2012) 513-529.

Google Scholar

[13] S. F.S. Mohamad, S. Mohamad, A.A. Aziz, The susceptibility of Aphids, Aphis gossypii Glover to lauric acid based natural pesticide, Procedia Eng. 53 (2013) 20-28.

DOI: 10.1016/j.proeng.2013.02.004

Google Scholar

[14] F.M. Fowkes. 1983. Acid-base interactions in polymer adhesion. In: Kittal K.L., editor. Physicochemical Aspects of Polymer Surfaces. 2. Plenum Press. pp.583-603.

Google Scholar

[15] K.D. Danov, P.A. Kralchevsky, K.P. Ananthapadmanabhan, A. Lips, Interpretation of surface-tension isotherms of n-alkanoic (fatty) acids by means of the van der Waals model, J. Colloid Interface Sci. 300 (2006) 809-813.

DOI: 10.1016/j.jcis.2006.04.026

Google Scholar

[16] C. Ahn, V.K. Morya, E.K. Kim, Tuning surface-active properties of bio-surfactant sophorolipids by varying fatty-acid chain lengths, Korean J. Chem. Eng. 33 (2016) 2127-2133.

DOI: 10.1007/s11814-016-0082-x

Google Scholar

[17] C.W. Jeon, S. Park, J.H. Bang, S. Chae, K. Song, S.W. Lee, Nonpolar surface modification using fatty acids and its effect on calcite from mineral carbonation of desulfurized gypsum, Coatings. 8 (2018) 43.

DOI: 10.3390/coatings8010043

Google Scholar

[18] D.M. Small. 1986. The physical chemistry of lipids: from alkanes to phospholipids. Handbook of lipid research. 4. Plenum Press. New York. p.264.

Google Scholar

[19] J.A. Camargo, A. Sapin, C. Nouvel, D. Daloz, M. Leonard, F. Bonneaux, et al., Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization, Drug Dev. Ind. Pharm. 39 (2013) 146-155.

DOI: 10.3109/03639045.2012.660952

Google Scholar

[20] M. Parent, C. Nouvel, M. Koerber, A. Sapin, P. Maincent, A. Boudier, PLGA in situ implants formed by phase inversion: Critical physicochemical parameters to modulate drug release, J. Control. Release. 172 (2013) 292-304.

DOI: 10.1016/j.jconrel.2013.08.024

Google Scholar

[21] A. L. Viken, K. Spildo, R. Reichenbach-Klinke, K. Djurhuus, T. Skauge, Influence of weak hydrophobic interactions on in situ viscosity of a hydrophobically modified water-soluble polymer, Energy Fuels. 32 (2018) 89-98.

DOI: 10.1021/acs.energyfuels.7b02573

Google Scholar

[22] Y. Liang, X. Yuan, L. Wang, X. Zhou, X. Ren, Y. Huang, et al., Highly stable and efficient electrorheological suspensions with hydrophobic interaction, J. Colloid Interface Sci. 564 (2020) 381-391.

DOI: 10.1016/j.jcis.2019.12.129

Google Scholar

[23] T. Phaechamud, S.M. Thurein, T. Chantadee, Role of clove oil in solvent exchange-induced doxycycline hyclate-loaded Eudragit RS in situ forming gel, Asian J. Pharm. 13 (2018) 131-142.

DOI: 10.1016/j.ajps.2017.09.004

Google Scholar

[24] H.A. Gad, M.A. El-Nabarawi, S.S. Abd El-Hady, Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis, AAPS J. 9 (2008) 878-884.

DOI: 10.1208/s12249-008-9126-9

Google Scholar

[25] M. Iwahashi, S. Takebayashi, M. Taguchi, Y. Kasahara, H. Minami, H. Matsuzawa, Dynamical dimer structure and liquid structure of fatty acids in their binary liquid mixture: decanoic/octadecanoic acid and decanoic/dodecanoic acid systems, Chem. Phys. Lipids. 133 (2005) 113-124.

DOI: 10.1016/j.chemphyslip.2004.09.022

Google Scholar