[1]
N. A. Resketi and V. Toufigh, Enhancement of brick-mortar shear bond strength using environmental friendly mortars,, Constr. Build. Mater., vol. 195, 2019,.
DOI: 10.1016/j.conbuildmat.2018.10.118
Google Scholar
[2]
G. de Felice et al., Mortar-based systems for externally bonded strengthening of masonry,, Mater. Struct. Constr., vol. 47, no. 12, p.2021–2037, 2014,.
DOI: 10.1617/s11527-014-0360-1
Google Scholar
[3]
L. Ascione, G. De Felice, and S. De Santis, A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems,, Compos. Part B Eng., vol. 78, p.497–506, 2015,.
DOI: 10.1016/j.compositesb.2015.03.079
Google Scholar
[4]
M. R. Valluzzi, C. Modena, and G. de Felice, Current practice and open issues in strengthening historical buildings with composites,, Mater. Struct. Constr., vol. 47, no. 12, p.1971–1985, 2014,.
DOI: 10.1617/s11527-014-0359-7
Google Scholar
[5]
S. M. Raoof, L. N. Koutas, and D. A. Bournas, Textile-reinforced mortar ( TRM ) versus fibre-reinforced polymers ( FRP ) in flexural strengthening of RC beams,, Constr. Build. Mater., vol. 151, p.279–291, 2017,.
DOI: 10.1016/j.conbuildmat.2017.05.023
Google Scholar
[6]
T. D'Antino and C. (Corina) Papanicolaou, Comparison between different tensile test set-ups for the mechanical characterization of inorganic-matrix composites,, Constr. Build. Mater., vol. 171, p.140–151, 2018,.
DOI: 10.1016/j.conbuildmat.2018.03.041
Google Scholar
[7]
J. Donnini, F. Bompadre, and V. Corinaldesi, Tensile behavior of a glass FRCM system after different environmental exposures,, Processes, vol. 8, no. 9, 2020,.
DOI: 10.3390/pr8091074
Google Scholar
[8]
S. De Santis et al., Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems,, Compos. Part B Eng., vol. 127, p.100–120, 2017,.
DOI: 10.1016/j.compositesb.2017.03.052
Google Scholar
[9]
J. Scacco, B. Ghiassi, G. Milani, and P. B. Lourenço, A fast modeling approach for numerical analysis of unreinforced and FRCM reinforced masonry walls under out-of-plane loading,, Compos. Part B Eng., vol. 180, no. August 2019, p.107553, 2020,.
DOI: 10.1016/j.compositesb.2019.107553
Google Scholar
[10]
Z. C. Tetta and D. A. Bournas, TRM vs FRP jacketing in shear strengthening of concrete members subjected to high temperatures,, Compos. Part B Eng., vol. 106, p.190–205, Dec. 2016,.
DOI: 10.1016/j.compositesb.2016.09.026
Google Scholar
[11]
L. A. S. Kouris and T. C. Triantafillou, State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM),, Constr. Build. Mater., vol. 188, p.1221–1233, 2018,.
DOI: 10.1016/j.conbuildmat.2018.08.039
Google Scholar
[12]
M. T. De Risi et al., Experimental analysis of strengthening solutions for the out-of-plane collapse of masonry infills in RC structures through textile reinforced mortars,, Eng. Struct., vol. 207, no. November 2019, p.110203, 2020,.
DOI: 10.1016/j.engstruct.2020.110203
Google Scholar
[13]
D. Arboleda, F. G. Carozzi, A. Nanni, and C. Poggi, Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites,, J. Compos. Constr., vol. 20, no. 3, p.1–11, 2016,.
DOI: 10.1061/(asce)cc.1943-5614.0000626
Google Scholar
[14]
P. Larrinaga, C. Chastre, H. C. Biscaia, and J. T. San-José, Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress,, Mater. Des., vol. 55, p.66–74, 2014,.
DOI: 10.1016/j.matdes.2013.09.050
Google Scholar
[15]
G. de Felice et al., Recommendation of RILEM Technical Committee 250-CSM: Test method for Textile Reinforced Mortar to substrate bond characterization,, Mater. Struct. Constr., vol. 51, no. 4, p.1–9, 2018,.
DOI: 10.1617/s11527-018-1216-x
Google Scholar
[16]
O. Awani, A. El Refai, and T. El-Maaddawy, Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests,, Constr. Build. Mater., vol. 101, p.39–49, Dec. 2015,.
DOI: 10.1016/j.conbuildmat.2015.10.017
Google Scholar
[17]
G. Loreto, S. Babaeidarabad, L. Leardini, and A. Nanni, RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite,, Int. J. Adv. Struct. Eng., vol. 7, no. 4, p.341–352, 2015,.
DOI: 10.1007/s40091-015-0102-9
Google Scholar
[18]
L. N. Koutas and D. A. Bournas, Flexural Strengthening of Two-Way RC Slabs with Textile-Reinforced Mortar: Experimental Investigation and Design Equations,, J. Compos. Constr., vol. 21, no. 1, p.04016065, 2017,.
DOI: 10.1061/(asce)cc.1943-5614.0000713
Google Scholar
[19]
N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, and M. Guadagnini, Bond of Flax Textile-Reinforced Mortars to Masonry,, Constr. Build. Mater., vol. 284, p.122849, 2021,.
DOI: 10.1016/j.conbuildmat.2021.122849
Google Scholar
[20]
G. Ferrara, C. Caggegi, A. Gabor, and E. Martinelli, Experimental Study on the Adhesion of Basalt Textile Reinforced Mortars (TRM) to Clay Brick Masonry: The Influence of Textile Density,, Fibers, vol. 7, no. 12, p.103, 2019,.
DOI: 10.3390/fib7120103
Google Scholar
[21]
Z. Dong, M. Deng, C. Zhang, Y. Zhang, and H. Sun, Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers,, Constr. Build. Mater., vol. 260, p.119897, 2020,.
DOI: 10.1016/j.conbuildmat.2020.119897
Google Scholar
[22]
T. Tlaiji, X. H. Vu, M. Michel, E. Ferrier, and A. S. Larbi, Physical, chemical and thermomechanical characterisation of glass textile-reinforced concretes (TRC): Effect of elevated temperature and of cementitious matrix nature on properties of TRC,, Mater. Today Commun., vol. 25, no. August, p.101580, 2020,.
DOI: 10.1016/j.mtcomm.2020.101580
Google Scholar
[23]
M. Saidi and A. Gabor, Experimental analysis and analytical modelling of the textile/matrix interface shear stress in textile reinforced cementitious matrix composites,, Compos. Part A Appl. Sci. Manuf., vol. 135, no. October 2019, p.105961, 2020,.
DOI: 10.1016/j.compositesa.2020.105961
Google Scholar
[24]
B.E. 1015–11, Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar,, (1999).
DOI: 10.3403/01905442
Google Scholar
[25]
A. C109/C109M, Standard Standard test method for compressive strength of hydraulic cement mortars.,.
Google Scholar
[26]
A. Dalalbashi, B. Ghiassi, and D.V. Oliveira, Aging of lime-based TRM composites under natural environmental conditions,, Constr. Build. Mater., vol. 270, 2021, doi:10.1016/ j.conbuildmat.2020.121853.
DOI: 10.1016/j.conbuildmat.2020.121853
Google Scholar
[27]
A. 549.6R-20, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) and Steel-Reinforced Grout (SRG) Systems for Repair and Strengthening Masonry Structures.,, (2020).
DOI: 10.14359/51702356
Google Scholar
[28]
A. Dalalbashi, B. Ghiassi, and D. V. Oliveira, Textile-to-mortar bond behaviour in lime-based textile reinforced mortars,, Constr. Build. Mater., vol. 227, p.116682, 2019,.
DOI: 10.1016/j.conbuildmat.2019.116682
Google Scholar
[29]
T. D'Antino, F. G. Carozzi, P. Colombi, and C. Poggi, A new pull-out test to study the bond behavior of fiber reinforced cementitious composites,, in Key Engineering Materials, 2017, vol. 747, p.258–265.
DOI: 10.4028/www.scientific.net/kem.747.258
Google Scholar
[30]
S. De Santis, F. G. Carozzi, G. de Felice, and C. Poggi, Test methods for Textile Reinforced Mortar systems,, Compos. Part B Eng., vol. 127, p.121–132, 2017,.
DOI: 10.1016/j.compositesb.2017.03.016
Google Scholar
[31]
S. De Santis and G. de Felice, Steel reinforced grout systems for the strengthening of masonry structures,, Compos. Struct., vol. 134, p.533–548, 2015,.
DOI: 10.1016/j.compstruct.2015.08.094
Google Scholar
[32]
T. D'Antino and C. Papanicolaou, Mechanical characterization of textile reinforced inorganic-matrix composites,, Compos. Part B Eng., vol.127, p.78–91, 2017,.
DOI: 10.1016/j.compositesb.2017.02.034
Google Scholar