Tensile Behavior of Textile-Reinforced Mortar: Influence of the Number of Layers and their Arrangement

Article Preview

Abstract:

In the last decade, textile-reinforced mortar (TRM) composites have been introduced as a sustainable solution for the strengthening of masonry structures. As an externally bonded reinforcement system, it consists of textile fibers embedded in an inorganic matrix (e.g., lime or cement mortar) applied to the substrate. Even though many studies have been focused on characterizing the mechanical behavior of TRM composites in recent years, there are still some drawbacks, including their tensile performance and few studies about multilayer textiles arrangement. This work aims at clarifying the effect of adding a second textile layer to TRM composites and investigating how textile arrangement affects the tensile behavior of the composite system. For this purpose, AR-glass and steel-based TRM composites were used in single layer and multilayer with different arrangements embedded in a lime-based mortar. The results show that using two plies of textile mesh improves the tensile response of TRM composites. In addition, it is found that the arrangement of different layers in the matrix influences the TRM response in different stress stages. The addition of a thin layer of mortar between two layers seems to improve the stiffness in uncracked condition and slightly decreases the final strength of TRM. Thus, the present study makes a step toward optimizing the arrangement of textiles in multilayer TRM composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-97

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Resketi and V. Toufigh, Enhancement of brick-mortar shear bond strength using environmental friendly mortars,, Constr. Build. Mater., vol. 195, 2019,.

DOI: 10.1016/j.conbuildmat.2018.10.118

Google Scholar

[2] G. de Felice et al., Mortar-based systems for externally bonded strengthening of masonry,, Mater. Struct. Constr., vol. 47, no. 12, p.2021–2037, 2014,.

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[3] L. Ascione, G. De Felice, and S. De Santis, A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems,, Compos. Part B Eng., vol. 78, p.497–506, 2015,.

DOI: 10.1016/j.compositesb.2015.03.079

Google Scholar

[4] M. R. Valluzzi, C. Modena, and G. de Felice, Current practice and open issues in strengthening historical buildings with composites,, Mater. Struct. Constr., vol. 47, no. 12, p.1971–1985, 2014,.

DOI: 10.1617/s11527-014-0359-7

Google Scholar

[5] S. M. Raoof, L. N. Koutas, and D. A. Bournas, Textile-reinforced mortar ( TRM ) versus fibre-reinforced polymers ( FRP ) in flexural strengthening of RC beams,, Constr. Build. Mater., vol. 151, p.279–291, 2017,.

DOI: 10.1016/j.conbuildmat.2017.05.023

Google Scholar

[6] T. D'Antino and C. (Corina) Papanicolaou, Comparison between different tensile test set-ups for the mechanical characterization of inorganic-matrix composites,, Constr. Build. Mater., vol. 171, p.140–151, 2018,.

DOI: 10.1016/j.conbuildmat.2018.03.041

Google Scholar

[7] J. Donnini, F. Bompadre, and V. Corinaldesi, Tensile behavior of a glass FRCM system after different environmental exposures,, Processes, vol. 8, no. 9, 2020,.

DOI: 10.3390/pr8091074

Google Scholar

[8] S. De Santis et al., Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems,, Compos. Part B Eng., vol. 127, p.100–120, 2017,.

DOI: 10.1016/j.compositesb.2017.03.052

Google Scholar

[9] J. Scacco, B. Ghiassi, G. Milani, and P. B. Lourenço, A fast modeling approach for numerical analysis of unreinforced and FRCM reinforced masonry walls under out-of-plane loading,, Compos. Part B Eng., vol. 180, no. August 2019, p.107553, 2020,.

DOI: 10.1016/j.compositesb.2019.107553

Google Scholar

[10] Z. C. Tetta and D. A. Bournas, TRM vs FRP jacketing in shear strengthening of concrete members subjected to high temperatures,, Compos. Part B Eng., vol. 106, p.190–205, Dec. 2016,.

DOI: 10.1016/j.compositesb.2016.09.026

Google Scholar

[11] L. A. S. Kouris and T. C. Triantafillou, State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM),, Constr. Build. Mater., vol. 188, p.1221–1233, 2018,.

DOI: 10.1016/j.conbuildmat.2018.08.039

Google Scholar

[12] M. T. De Risi et al., Experimental analysis of strengthening solutions for the out-of-plane collapse of masonry infills in RC structures through textile reinforced mortars,, Eng. Struct., vol. 207, no. November 2019, p.110203, 2020,.

DOI: 10.1016/j.engstruct.2020.110203

Google Scholar

[13] D. Arboleda, F. G. Carozzi, A. Nanni, and C. Poggi, Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites,, J. Compos. Constr., vol. 20, no. 3, p.1–11, 2016,.

DOI: 10.1061/(asce)cc.1943-5614.0000626

Google Scholar

[14] P. Larrinaga, C. Chastre, H. C. Biscaia, and J. T. San-José, Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress,, Mater. Des., vol. 55, p.66–74, 2014,.

DOI: 10.1016/j.matdes.2013.09.050

Google Scholar

[15] G. de Felice et al., Recommendation of RILEM Technical Committee 250-CSM: Test method for Textile Reinforced Mortar to substrate bond characterization,, Mater. Struct. Constr., vol. 51, no. 4, p.1–9, 2018,.

DOI: 10.1617/s11527-018-1216-x

Google Scholar

[16] O. Awani, A. El Refai, and T. El-Maaddawy, Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests,, Constr. Build. Mater., vol. 101, p.39–49, Dec. 2015,.

DOI: 10.1016/j.conbuildmat.2015.10.017

Google Scholar

[17] G. Loreto, S. Babaeidarabad, L. Leardini, and A. Nanni, RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite,, Int. J. Adv. Struct. Eng., vol. 7, no. 4, p.341–352, 2015,.

DOI: 10.1007/s40091-015-0102-9

Google Scholar

[18] L. N. Koutas and D. A. Bournas, Flexural Strengthening of Two-Way RC Slabs with Textile-Reinforced Mortar: Experimental Investigation and Design Equations,, J. Compos. Constr., vol. 21, no. 1, p.04016065, 2017,.

DOI: 10.1061/(asce)cc.1943-5614.0000713

Google Scholar

[19] N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, and M. Guadagnini, Bond of Flax Textile-Reinforced Mortars to Masonry,, Constr. Build. Mater., vol. 284, p.122849, 2021,.

DOI: 10.1016/j.conbuildmat.2021.122849

Google Scholar

[20] G. Ferrara, C. Caggegi, A. Gabor, and E. Martinelli, Experimental Study on the Adhesion of Basalt Textile Reinforced Mortars (TRM) to Clay Brick Masonry: The Influence of Textile Density,, Fibers, vol. 7, no. 12, p.103, 2019,.

DOI: 10.3390/fib7120103

Google Scholar

[21] Z. Dong, M. Deng, C. Zhang, Y. Zhang, and H. Sun, Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers,, Constr. Build. Mater., vol. 260, p.119897, 2020,.

DOI: 10.1016/j.conbuildmat.2020.119897

Google Scholar

[22] T. Tlaiji, X. H. Vu, M. Michel, E. Ferrier, and A. S. Larbi, Physical, chemical and thermomechanical characterisation of glass textile-reinforced concretes (TRC): Effect of elevated temperature and of cementitious matrix nature on properties of TRC,, Mater. Today Commun., vol. 25, no. August, p.101580, 2020,.

DOI: 10.1016/j.mtcomm.2020.101580

Google Scholar

[23] M. Saidi and A. Gabor, Experimental analysis and analytical modelling of the textile/matrix interface shear stress in textile reinforced cementitious matrix composites,, Compos. Part A Appl. Sci. Manuf., vol. 135, no. October 2019, p.105961, 2020,.

DOI: 10.1016/j.compositesa.2020.105961

Google Scholar

[24] B.E. 1015–11, Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar,, (1999).

DOI: 10.3403/01905442

Google Scholar

[25] A. C109/C109M, Standard Standard test method for compressive strength of hydraulic cement mortars.,.

Google Scholar

[26] A. Dalalbashi, B. Ghiassi, and D.V. Oliveira, Aging of lime-based TRM composites under natural environmental conditions,, Constr. Build. Mater., vol. 270, 2021, doi:10.1016/ j.conbuildmat.2020.121853.

DOI: 10.1016/j.conbuildmat.2020.121853

Google Scholar

[27] A. 549.6R-20, Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) and Steel-Reinforced Grout (SRG) Systems for Repair and Strengthening Masonry Structures.,, (2020).

DOI: 10.14359/51702356

Google Scholar

[28] A. Dalalbashi, B. Ghiassi, and D. V. Oliveira, Textile-to-mortar bond behaviour in lime-based textile reinforced mortars,, Constr. Build. Mater., vol. 227, p.116682, 2019,.

DOI: 10.1016/j.conbuildmat.2019.116682

Google Scholar

[29] T. D'Antino, F. G. Carozzi, P. Colombi, and C. Poggi, A new pull-out test to study the bond behavior of fiber reinforced cementitious composites,, in Key Engineering Materials, 2017, vol. 747, p.258–265.

DOI: 10.4028/www.scientific.net/kem.747.258

Google Scholar

[30] S. De Santis, F. G. Carozzi, G. de Felice, and C. Poggi, Test methods for Textile Reinforced Mortar systems,, Compos. Part B Eng., vol. 127, p.121–132, 2017,.

DOI: 10.1016/j.compositesb.2017.03.016

Google Scholar

[31] S. De Santis and G. de Felice, Steel reinforced grout systems for the strengthening of masonry structures,, Compos. Struct., vol. 134, p.533–548, 2015,.

DOI: 10.1016/j.compstruct.2015.08.094

Google Scholar

[32] T. D'Antino and C. Papanicolaou, Mechanical characterization of textile reinforced inorganic-matrix composites,, Compos. Part B Eng., vol.127, p.78–91, 2017,.

DOI: 10.1016/j.compositesb.2017.02.034

Google Scholar