[1]
A.P.I. Popoola, A.A. Daniyan, L.E. Umoru, O.S.I. Fayomi. Effect of W.O. 3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application. Journal of Marine Science and Application, 1,16 (2017) 102-109.
DOI: 10.1007/s11804-017-1389-7
Google Scholar
[2]
A.A. Afonja, Novel materials for energy applications. Nigerian Journal of Materials Science and Engineering, 1 (2009) 63-72.
Google Scholar
[3]
A.A. Daniyan, L.E. Umoru, A.Y. Fasasi, J.O. Borode, K.M. Oluwasegun, S.O. Olusunle, Electrical properties of nano-TiO2 thin film using spin coating method. Journal of Minerals and Materials Characterization and Engineering, 2 (2014) 15.
DOI: 10.4236/jmmce.2014.21003
Google Scholar
[4]
M.D. Ger, Electrochemical deposition of nickel/SiC composites in the presence of surfactants. Materials Chemistry and Physics, 1,87 (2004) 67-74.
DOI: 10.1016/j.matchemphys.2004.04.022
Google Scholar
[5]
Z.A. Hamid, Composite and Nanocomposite Coatings. Journal of Metallurgical Engineering, 1,3 (2014) 29-42.
Google Scholar
[6]
P.K.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 1,12 (2009) 1-39.
DOI: 10.1590/s1516-14392009000100002
Google Scholar
[7]
O.S.I. Fayomi, L.R. Kanyane, T. Monyai, Development of reinforced in-situ anti-corrosion and wear Zn-TiO2/ZnTiB2 coatings on mild steel. Results in physics, 7 (2017) 644-650.
DOI: 10.1016/j.rinp.2017.01.021
Google Scholar
[8]
O.O. Ajayi, O.F. Omowa, O.P. Abioye, O.A. Omotosho, E.T. Akinlabi, S.A Akinlabi, A.A. Abioye, F.T. Owoeye, S.A. Afolalu, Finite Element Modelling of Electrokinetic Deposition of Zinc on Mild Steel with ZnO-CitruSinensisis as Nano-Additive. In T.M.S. Annual Meeting and Exhibition. 199-211 (2018) Springer, Cham.
DOI: 10.1007/978-3-319-72059-3_19
Google Scholar
[9]
B.M. Praveen, T.V. Venkatesha, Electrodeposition and corrosion resistance properties of Zn-Ni/TiO2 nano composite coatings. International Journal of Electrochemistry, (2011).
DOI: 10.4061/2011/261407
Google Scholar
[10]
D.M. Mattox, Handbook of physical vapor deposition (P.V.D.) processing. William Andrew, (2010).
Google Scholar
[11]
O.P. Abioye, C.A. Loto, O.S.I. Fayomi, Evaluation of Anti-biofouling Progresses in Marine Application. Journal of Bio-and Tribo-Corrosion, 1,5 (2019) 22.
DOI: 10.1007/s40735-018-0213-5
Google Scholar
[12]
P.T. Sharpe, Fish scale development: hair today, teeth and scales yesterday?. Current Biology, 18,11 (2001) R751-R752.
DOI: 10.1016/s0960-9822(01)00438-9
Google Scholar
[13]
A.P.I. Popoola, O.S.I. Fayomi, ZnO as corrosion inhibitor for dissolution of zinc electrodeposited mild steel in varying HCl concentration. International Journal of the Physical Sciences, 10,6 (2011) 2447-2454.
Google Scholar
[14]
O.S. Fayomi, C.A. Loto, V.R. Tau, Effect of process parameter on the in-situ intermetallic composite coating and microstructural evolution of Zn-Al2O3 in the presence of TEA/MEA on mild steel. International Journal of Electrochemical Science, 9 (2014) 7359-7368.
Google Scholar
[15]
P.A. Anawe, O. Raji, O.S.I Fayomi, V.E. Efeovbohkan, Influence of Composite Nano Coating on Ternary Sulphate Co-deposition: Corrosion and Surface Characterization. Procedia Manufacturing, 7 (2017) 556-561.
DOI: 10.1016/j.promfg.2016.12.073
Google Scholar
[16]
P. Wang, Y.L. Cheng, Z. Zhang, A study on the electrocodeposition processes and properties of Ni–SiC nanocomposite coatings. Journal of coatings technology and research, 3,8 (2011) 409-417.
DOI: 10.1007/s11998-010-9310-1
Google Scholar
[17]
O.S. Fayomi, Effect of some process variables on zinc coated low carbon steel substrates. Scientific research and essays, 20,6 (2011) 4264-4272.
DOI: 10.5897/sre11.777
Google Scholar
[18]
O.P. Abioye, O.S.I. Fayomi, & C.A. Loto, Electrochemical Study of Co-Deposited Zn-ZnO on ASTM A36 Mild Steel for Marine Application. Journal of Bio-and Tribo-Corrosion, 6 (2020)1-6.
DOI: 10.1007/s40735-020-00371-w
Google Scholar