[1]
O. Sanni, A. Popoola, and O. Fayomi, Temperature effect, activation energies and adsorption studies of waste material as stainless steel corrosion inhibitor in sulphuric acid 0.5 M, Journal of Bio-and Tribo-Corrosion. 5(2019) 1-8.
DOI: 10.1007/s40735-019-0280-2
Google Scholar
[2]
O. Sanni, A. Popoola, and O. Fayomi, Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product, Results in Physics. 9(2018) 225-230.
DOI: 10.1016/j.rinp.2018.02.001
Google Scholar
[3]
O. Sanni, C. Loto, and A. Popoola, Inhibitive tendency of zinc gluconate for aluminium alloy in sulphuric acid solution, Polish Journal of Chemical Technology. 15(2013) 60-64.
DOI: 10.2478/pjct-2013-0069
Google Scholar
[4]
D. S. Chauhan, M. Quraishi, A. Sorour, S. K. Saha, and P. Banerjee, Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution, RSC advances. 9(2019) 14990-15003.
DOI: 10.1039/c9ra00986h
Google Scholar
[5]
K. C. d. S. de Lima, V. M. Paiva, D. Perrone, B. Ripper, G. Simoes, M. L. M. Rocco, et al., Glycine max meal extracts as corrosion inhibitor for mild steel in sulphuric acid solution, Journal of Materials Research and Technology. (2020) 912756-12772.
DOI: 10.1016/j.jmrt.2020.09.019
Google Scholar
[6]
A. Fouda, M. Hegazi, and A. El-Azaly, Henna extract as green corrosion inhibitor for carbon steel in hydrochloric acid solution, Int. J. Electrochem. Sci. 14 (2019) 4668-4682.
DOI: 10.20964/2019.05.47
Google Scholar
[7]
S. Chen, B. Zhu, and X. Liang, Corrosion inhibition performance of coconut leaf extract as a green corrosion inhibitor for X65 steel in hydrochloric acid solution, Int. J. Electrochem. Sci. 15 (2020) 1-15.
DOI: 10.20964/2020.01.39
Google Scholar
[8]
X. Zhang, W. Li, G. Yu, X. Zuo, W. Luo, J. Zhang, et al., Evaluation of Idesia polycarpa Maxim fruits extract as a natural green corrosion inhibitor for copper in 0.5 M sulfuric acid solution, Journal of Molecular Liquids, vol. 318, p.114080, (2020).
DOI: 10.1016/j.molliq.2020.114080
Google Scholar
[9]
M. Belghiti, S. Bouazama, S. Echihi, A. Mahsoune, A. Elmelouky, A. Dafali, et al., Understanding the adsorption of newly Benzylidene-aniline derivatives as a corrosion inhibitor for carbon steel in hydrochloric acid solution: Experimental, DFT and molecular dynamic simulation studies, Arabian Journal of Chemistry. 13 (2020) 1499-1519.
DOI: 10.1016/j.arabjc.2017.12.003
Google Scholar
[10]
W. Zhang, H.-J. Li, Y. Liu, D. Wang, L. Chen, L. Xie, et al., Stevioside–Zn2+ system as an eco-friendly corrosion inhibitor for C1020 carbon steel in hydrochloric acid solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 612 (2021) 126010.
DOI: 10.1016/j.colsurfa.2020.126010
Google Scholar
[11]
B. Tan, B. Xiang, S. Zhang, Y. Qiang, L. Xu, S. Chen, et al., Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium, Journal of Colloid and Interface Science, 582 (2021) 918-931.
DOI: 10.1016/j.jcis.2020.08.093
Google Scholar
[12]
H. Li, Y. Qiang, W. Zhao, and S. Zhang, A green Brassica oleracea L extract as a novel corrosion inhibitor for Q235 steel in two typical acid media, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 616 (2021) 126077.
DOI: 10.1016/j.colsurfa.2020.126077
Google Scholar
[13]
S. Javadian, A. Yousefi, and J. Neshati, Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl, Applied Surface Science. 285 (2013) 674-681.
DOI: 10.1016/j.apsusc.2013.08.109
Google Scholar
[14]
H. Gao, Q. Li, Y. Dai, F. Luo, and H. Zhang, High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy, Corrosion Science. 52 (2010) 1603-1609.
DOI: 10.1016/j.corsci.2010.01.033
Google Scholar
[15]
M. Mobin, R. Aslam, and J. Aslam, Non toxic biodegradable cationic gemini surfactants as novel corrosion inhibitor for mild steel in hydrochloric acid medium and synergistic effect of sodium salicylate: Experimental and theoretical approach, Materials Chemistry and Physics. 191(2017) 151-167.
DOI: 10.1016/j.matchemphys.2017.01.037
Google Scholar
[16]
H. K. Moudgil, S. Yadav, R. Chaudhary, and D. Kumar, Synergistic effect of some antiscalants as corrosion inhibitor for industrial cooling water system, Journal of applied electrochemistry, 39 (2009) 1339-1347.
DOI: 10.1007/s10800-009-9807-4
Google Scholar
[17]
S. Wu, Q. Zhang, D. Sun, J. Luan, H. Shi, S. Hu, et al., Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery, Chemical Engineering Journal. 383 (2020) 123162.
DOI: 10.1016/j.cej.2019.123162
Google Scholar
[18]
A. Popoola, O. Sanni, C. Loto, and O. Popoola, Corrosion inhibition: synergistic influence of gluconates on mild steel in different corrosive environments. Synergetic interactions of corrosion inhibition tendency of two different gluconates on mild steel in different corrosive environments, Portugaliae Electrochimica Acta. 33 (2015) 353-370.
DOI: 10.4152/pea.201506353
Google Scholar
[19]
A. Thoume, A. Elmakssoudi, D. B. Left, N. Benzbiria, F. Benhiba, M. Dakir, et al., Amino acid structure analog as a corrosion inhibitor of carbon steel in 0.5 M H2SO4: Electrochemical, synergistic effect and theoretical studies, Chemical Data Collections. 30 (2020) 100586.
DOI: 10.1016/j.cdc.2020.100586
Google Scholar
[20]
M. Khadiri, R. Idouhli, M. A. Bennouna, A. Aityoub, A. Abouelfida, and A. Benyaïch, Contribution to understanding synergistic effect of Punica granatum extract and potassium iodide as corrosion inhibitor of S355 steel, Corrosion Reviews. 39 (2021) 137-148.
DOI: 10.1515/corrrev-2020-0042
Google Scholar
[21]
M. Ahangar, M. Izadi, T. Shahrabi, and I. Mohammadi, The synergistic effect of zinc acetate on the protective behavior of sodium lignosulfonate for corrosion prevention of mild steel in 3.5 wt% NaCl electrolyte: Surface and electrochemical studies, Journal of Molecular Liquids. 314, (2020) 113617.
DOI: 10.1016/j.molliq.2020.113617
Google Scholar
[22]
L. Kaghazchi, R. Naderi, and B. Ramezanzadeh, Synergistic mild steel corrosion mitigation in sodium chloride-containing solution utilizing various mixtures of phytic acid molecules and Zn2+ ions, Journal of Molecular Liquids, 323 (2021) 114589.
DOI: 10.1016/j.molliq.2020.114589
Google Scholar
[23]
S. S. Rao, B. A. Rao, S. R. Kiran, and B. Sreedhar, Lactobionic Acid as a New Synergist in Combination with Phosphonate–Zn (II) System for Corrosion Inhibition of Carbon Steel, Journal of Materials Science & Technology. 30 (2014) 77-89.
DOI: 10.1016/j.jmst.2013.10.003
Google Scholar
[24]
S. Abrishami, R. Naderi, and B. Ramezanzadeh, Fabrication and characterization of zinc acetylacetonate/Urtica Dioica leaves extract complex as an effective organic/inorganic hybrid corrosion inhibitive pigment for mild steel protection in chloride solution, Applied Surface Science. 457 (2018) 487-496.
DOI: 10.1016/j.apsusc.2018.06.190
Google Scholar
[25]
J. Komotori, N. Hisamori, and Y. Ohmori, The corrosion/wear mechanisms of Ti–6Al–4V alloy for different scratching rates, Wear. 263 (2007) 412-418.
DOI: 10.1016/j.wear.2006.11.025
Google Scholar
[26]
S. Bashir, A. Thakur, H. Lgaz, I.-M. Chung, and A. Kumar, Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: Insights from experimental and quantum chemical studies, Surfaces and Interfaces. 20 (2020) 100542.
DOI: 10.1016/j.surfin.2020.100542
Google Scholar
[27]
A. Fouda, M. El-morsi, M. Gaber, and M. Fakeeh, A comparative study of the corrosion inhibition of carbon steel in HCl solution by 1‐[(5‐mercapto‐1H‐1, 2, 4‐triazole‐3‐yl) diazenyl] naphthalene‐2‐ol (HL) and its manganese complex, Chemical Data Collections. vol. 28 (2020) 100479.
DOI: 10.1016/j.cdc.2020.100479
Google Scholar